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Computational study of thermal conductivity of interconnected networks of bundles in carbon

nanotube (CNT) films reveals a strong effect of the finite thermal conductivity kT of individual

nanotubes on the conductivity k of the CNT materials. The physical origin of this effect is explained

in a theoretical analysis of systems composed of straight randomly dispersed CNTs. An analytical

equation for quantitative description of the effect of finite kT on the value of k is obtained and

adopted for continuous networks of bundles characteristic of CNT films and buckypaper. Contrary to

the common assumption of the dominant effect of the contact conductance, the contribution of the

finite kT is found to control the value of k at material densities and CNT lengths typical for real

materials. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737903]

Experimental measurements of thermal conductivity of

individual CNTs, kT, reveal exceptionally high room tempera-

ture values ranging from 1400 Wm�1 K�1 to 3000 Wm�1 K�1

for multi-walled CNTs (Refs. 1–4) and even higher values for

single-walled CNTs.3,5 These values by far exceed the thermal

conductivity characteristic of most of the conventional materi-

als and suggest that CNTs are among the most promising

structural elements for the design of new nanomaterials for

heat management applications. The exceptionally high ther-

mal conductivity of individual CNTs, however, does not trans-

late into correspondingly high thermal conductivity, k, of

CNT materials, such as CNT films, mats, buckypaper, and

vertically aligned arrays, which exhibit fairly small thermal

conductivity in the range6–9 of 10–220 Wm�1 K�1 and even

down to �0.1 Wm�1 K�1.10

It is generally accepted that the thermal conductivity of

CNT materials is limited by the weak thermal coupling

between the individual CNTs (Refs. 10–17) rather that the

heat conduction within individual CNTs. To evaluate the rel-

ative importance of thermal transport by intrinsic conductiv-

ity and contact conductance in a CNT material, one can

calculate the equivalent length of a CNT segment, Leq, which

has the same thermal resistance as a single thermal contact.12

This equivalent length can be found by equating the corre-

sponding heat fluxes needed to support the same temperature

difference DT across a CNT contact and along the CNT seg-

ment of length Leq, kTATDT=Leq ¼ rcDT, where LT and AT

are the nanotube length and cross-sectional area and rc is the

effective inter-tube contact conductance. For single-walled

(10,10) CNTs taken as an example, the equivalent length can

be evaluated by using rc ¼ 5� 10�11 W K�1 predicted in at-

omistic calculations for two (10,10) CNTs crossing each

other at 90� angle,10 and defining AT ¼ 2pRTdT , where

RT ¼ 6:785 Å is the radius of a CNT and dT ¼ 3:4 Å is the

interlayer spacing in graphite. For kT ¼ 2000 Wm�1 K�1, the

thermal resistance of an inter-tube contact is equivalent to

the thermal resistance of a CNT segment with Leq ¼ 59 lm.

At first sight, this estimation appears to support the notion of

small or even negligible effect of the intrinsic thermal resis-

tance of CNTs on the effective conductivity of a network

material composed of CNTs. The assumption of negligible

contribution of the intrinsic thermal resistance of CNTs

and, therefore, constant temperature of individual CNTs, is

indeed commonly used in theoretical models aimed at pre-

diction of the effective thermal conductivity of CNT mate-

rials, e.g., Refs. 10, 17, and 18.

In this letter, the validity of this assumption is evaluated

in a series of calculations of thermal conductivity of continu-

ous networks of (10,10) CNT bundles generated in meso-

scopic simulations and exhibiting structural characteristics

typical of CNT films and buckypaper.19,20 The intrinsic ther-

mal resistance of CNTs is found to make the dominant con-

tribution to the effective thermal resistance of the CNT

material for any reasonable value of kT and LT exceeding

several hundreds of nanometers. This unexpectedly strong

effect of the large but finite values of kT is confirmed in a

theoretical analysis that provides the conductivity scaling

law for samples composed of randomly dispersed straight

CNTs. The extension of the scaling law to the networks of

bundles is demonstrated through the introduction of a semi-

empirical parameter characterizing the effective contact con-

ductance in the continuous network structures.

The samples used in the calculations of thermal conduc-

tivity are generated with a mesoscopic model that represents

individual CNTs as chains of stretchable cylindrical seg-

ments21 and accounts for the internal stretching, bending,

and buckling of nanotubes,20,21 as well as for the van der

Waals interactions among the CNTs.19 The simulations per-

formed for systems composed of randomly distributed and

oriented CNTs predict spontaneous self-assembly of CNTs

into continuous networks of bundles with partial hexagonal

ordering of CNTs in the bundles and preferential orientation

of the bundles parallel to the planes of the films.19,20 The

network structures produced in the simulations are stabilized

by the presence of multiple bending buckling kinks20 and

are similar to the structures of CNT films observed in
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experiments.22–24 All simulations are performed for films

consisting of (10,10) single-walled CNTs with length LT

varying from 100 nm to 1 lm. The films have thickness of 20

to 100 nm and density of 0.2 g cm�3, typical for CNT films.22

The calculation of in-plane thermal conductivity k of the

CNT films is performed with a method suggested in Ref. 17

and enhanced with treatment of finite thermal conductivity

of the nanotubes. The thermal conductivity is calculated by

connecting two sides of a static network structure generated

in a mesoscopic simulation to two heat baths maintained at

different temperatures and evaluating the steady-state heat

flux Qx and temperature gradient rTx established in the sam-

ple. The thermal conductivity can then be found from the

Fourier law, k ¼ �Qx=ðrTxAxÞ, where Ax is the cross-

sectional area of the sample in the direction perpendicular to

the applied temperature gradient (x-axis in Fig. 1).

The evaluation of Qx requires determination of tempera-

ture distributions in all CNTs defined by contact and intrinsic

heat fluxes. The contact heat flux between nanotubes is

defined through the “heat transfer” function wðrÞ that

depends on the distance r between points on the surfaces of

nanotubes.17 For isothermal nanotubes (kT ¼ 1), contact

heat flux between nanotubes i and j, Qij, is calculated as

Qij ¼ rcijðTj � TiÞ, where the contact thermal conductance

rcij ¼ rc0Wij=W0 depends on geometrical arrangement of

CNTs through function Wij ¼ n2
r

Ð Ð
wðrÞdSidSj, where the

integration is performed over the surfaces of interacting

nanotubes, nr is the number density of atoms on the nano-

tube surface, and rc0 is the conductance for a particular geo-

metrical arrangement of nanotubes when Wij ¼ W0. In a case

of non-isothermal CNTs (finite kT), the heat flux between a

part of CNT i extending from one end (li ¼ 0) up to the

length l and the whole CNT j can be expressed as

QijðlÞ ¼ ðn2
rrc0=W0Þ

Ð Ð
wðrÞðTjðljÞ � TiðliÞÞdSidSj, where

TiðliÞ is the distribution of temperature along the CNT length

li (0 � li � LT) and the integration is over the surface of a

part of CNT i (0 � li � l) and the whole CNT j. The value of

rc0 ¼ 5� 10�11 W K�1 for two (10,10) CNTs crossing each

other at 90� angle is chosen in this work based on the results

of atomistic Green’s function calculations.10

The temperature distribution along an individual nano-

tube i that belongs to a percolating cluster in a CNT network

and does not cross the heat bath boundaries is determined

from the heat conduction equation

d

dli
ATkT

dTi

dli

� �
¼ �

XN

j¼1

dQijðliÞ
dli

; (1)

solved with boundary conditions dTi=dli ¼ 0 at li ¼ 0 and

li ¼ LT . This equation accounts for both the internal heat

conduction described by the Fourier law Qi ¼ �kTATdTi=dli,

and the heat exchange with surrounding nanotubes. The solu-

tion of Eq. (1) for all CNTs in the system enclosed between

the hot and cold heat baths yields the steady-state heat flux

Qx and enables evaluation of the thermal conductivity of the

material. In the case of kT ¼ 1, the calculation of tempera-

tures of CNTs reduces to balancing of the contact heat fluxes

in each CNT.

Since experimental measurements1–5 and theoretical

calculations25–27 of thermal conductivity kT of individual

CNTs yield a broad range of values, the simulations reported

in this work are performed with kT ¼ 200 Wm�1 K�1,

600 Wm�1 K�1, 2000 Wm�1 K�1, and kT ¼ 1. The simula-

tions demonstrate that the temperature variations along indi-

vidual CNTs at finite kT remain fairly small (Fig. 1). This is

not surprising since Leq is large in all simulations, e.g.,

Leq ¼ 5:9 lm at kT ¼ 200 Wm�1 K�1 and Leq ¼ 59 lm at

kT ¼ 2000 Wm�1 K�1. Nevertheless, the thermal conduc-

tivity of the film is strongly reduced when the finite value of

kT is used in the calculations (Fig. 2). Even for a relatively

high intrinsic conductivity kT ¼ 2000 Wm�1 K�1 and

LT ¼ 1 lm, the value of the effective conductivity of the

CNT network is �3.5 times smaller than that at kT ¼ 1. For

FIG. 1. A fragment of one of the CNT film structures generated in a meso-

scopic simulation and used in the calculations of thermal conductivity k.

The picture shows a part of a larger (500 nm� 500 nm� 100 nm) sample

composed of (10,10) CNTs with LT ¼ 200 nm and material density of

0.2 g cm�3. Left and right sides of the sample are connected with heat baths

and temperature gradient is applied in the horizontal direction. Individual

nanotubes are colored by their temperatures calculated with

kT ¼ 200 W m�1 K�1. Despite the relatively small conductivity of individual

CNTs adopted in the simulation, the temperature variations along CNTs are

fairly small and all nanotubes arranged into a bundle tend to maintain similar

temperatures.

FIG. 2. Thermal conductivity k of CNT films generated in mesoscopic sim-

ulations vs. nanotube length LT for kT ¼ 200 Wm�1 K�1 (squares),

kT ¼ 600 Wm�1 K�1 (triangles), kT ¼ 2000 Wm�1 K�1 (diamonds), and

kT ¼ 1 (circles). Dash-double-dotted line is the power law k / L2:2
T fit to

the values obtained at kT ¼ 1 for LT � 150 nm.
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longer nanotubes, the relative contribution of the intrinsic

thermal resistance of CNTs to the effective thermal resist-

ance of the CNT material should increase, since the ratio

k=k0 (k0 is the conductivity at kT ¼ 1) decreases with

increasing LT=Leq, as it is apparent from data in Fig. 2.

We believe that the strong reduction of the conductivity

of the CNT films due to the finite thermal conductivity of

individual nanotubes, revealed in the mesoscopic simula-

tions, is not a peculiarity specific for the networks of inter-

connected CNT bundles, but a general trend common for

network structures composed of conducting fibers. To sup-

port this claim, we perform a theoretical analysis of the rela-

tion between k and k0 for two-dimensional (2D) and three-

dimensional (3D) isotropic networks composed of randomly

dispersed straight nanotubes. A soft-core approach28,29 is

used to define thermal contacts between nanotubes, i.e., the

CNTs are allowed to intersect each other, and every intersec-

tion of a pair of CNTs is treated as a thermal contact with a

constant contact conductance rc. This approach is similar to

that used in Refs. 17 and 18 for systems with kT ¼ 1, with

the main difference being that distributions of temperature

along the nanotubes are now calculated based on Eq. (1). For

the soft-core CNTs with well-defined points of thermal

contacts, the right-hand side of Eq. (1) reduces to

�
PN

j¼1;dij¼1 dðli � lijÞrcðTjðljiÞ � TiðlijÞÞ, where dðlÞ is the

Dirac d-function, lij is the position of thermal contact

between CNTs i and j on the axis of CNT i, and dij ¼ 1 for

CNT pairs that are in thermal contact with each other. Inte-

gration of Eq. (1) along the length of CNT i yields

Tijli¼LT
� Tijli¼0

LTcoshi
¼ Bic

XN

j ¼ 1

dij ¼ 1

TjðljiÞ � TiðlijÞ
LTcoshi

lij � LT

LT
; (2)

where hi is the angle between the axis of CNT i and the

direction of the temperature gradient in the network (x-axis)

and Bic ¼ rcLT=ðkTATÞ is the ratio of the conductance at a

single contact to the intrinsic nanotube conductance. The dis-

tribution of temperature along CNT i as a function of coordi-
nate x can be expressed in the form

TiðxÞ ¼ T0 þrTxxCi
þ dTi

dx

� �
ðx� xCi

Þ þ dTiðxÞ; (3)

where T0 is the averaged sample temperature at x ¼ 0, rTx

is the temperature gradient imposed in the x direction,

hdTi=dxi is equal to ensemble-averaged value of the left

hand part in Eq. (2), i.e., hdTi=dxi ¼ hðTijli¼LT
� Tijli¼0Þ

=ðLTcoshiÞi (h…i hereinafter denotes averaging over all pos-

sible random configurations of CNTs), xCi is the x coordinate

of the center of nanotube i, and dTiðxÞ accounts for the devi-

ation of the actual temperature from the linear distribution

given by the first, second, and third terms. If the density pa-

rameter (�nS ¼ nSL2
T in 2D or �nV ¼ nVRTL2

T in 3D samples,

where nS or nV is the surface or volume number density of

nanotubes17) is high and aspect ratio of nanotubes, LT=RT , is

large, then it is reasonable to assume (and numerical simula-

tions support this assumption) that the actual temperature

distributions along nanotubes are close to linear ones and,

dTiðxÞ term in Eq. (3) can be neglected. Additionally, for

LT=RT � 1, the points of thermal contact on the axes of

CNTs i and j become indistinguishable, i.e., xij ¼ xji, where

xij is the x coordinate of thermal contact between CNTs i and

j lying on the axis of CNT i. Then, using Eq. (3) for calcula-

tion of TjðljiÞ � TiðlijÞ at a large density parameter and

LT=RT � 1 and taking into account that for both 2D and 3D

samples h
PN

j¼1;dij¼1ðxCj � xCiÞ=ðLTcoshiÞðlij=LT � 1Þi=hNJi
¼ 1=12 (hNJi is the averaged number of thermal contacts per

CNT, hNJi ¼ ð2=pÞ�nS and hNJi ¼ p�nV in 2D and 3D sam-

ples, respectively17), the ensemble-averaged Eq. (2) can be

written as

hdTi=dxi
rTx

¼ BichNJi=12

1þ BichNJi=12
: (4)

In the framework of the soft-core model,28,29 the thermal

conductivity of both 2D and 3D samples composed of

straight nanotubes can be represented in the form17

k ¼ k	hNxihNJihDTðþÞi, where the coefficient k	, the aver-

aged number of nanotubes hNxi crossing a unit area perpen-

dicular to the temperature gradient, and hNJi are independent

of kT , whereas the averaged temperature difference at con-

tacts that define the heat flux through a sample cross-section

at x ¼ const (these contacts are located to the right of the

cross section), hDTðþÞi, does depend on kT . Then

k ¼ k0hDTðþÞi=hDTðþÞi0, where hDTðþÞi0 is hDTðþÞi eval-

uated at Bic ¼ 0. The value of hDTðþÞi can be expressed

as hDTðþÞi ¼ h
PN

i¼1

PN
j¼1 dijðþÞðxÞðTjðxjiÞ � TiðxijÞÞi=h

PN
i¼1PN

j¼1 dijðþÞðxÞi, where dijðþÞðxÞ ¼ 1 if CNT i intersects the

cross section and the point of contact between CNTs i and j
is located to the right of the cross section, otherwise

dijðþÞðxÞ ¼ 0. Using Eq. (3) for the temperatures in the above

equation, for a large density parameter and LT=RT � 1, we

obtain hDTðþÞi =hDTðþÞi0 ¼ ð1� hdTi=dxi=rTxÞ which,

FIG. 3. Ratio k=k0 vs. Biot number BiT ¼ BichNJi ¼ rchNJiLT=ðkTATÞ.
The curve corresponds to the prediction of Eq. (5). The symbols mark the

values of k=k0 calculated for samples generated in mesoscopic simulations

and shown in Fig. 2, with BiT calculated based on the average number of

thermal contacts hNJi and effective contact conductance rc in the network

structure (see text).
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combined with Eq. (4), yields the final expression for the

conductivity of the network material

k ¼ k0

1þ BichNJi=12
¼ k0

1þ BiT=12
; (5)

where BiT ¼ BichNJi ¼ rchNJiLT=ðkTATÞ. Equation (5)

shows that the effect of the finite conductivity of individual

nanotubes is characterized solely by a new dimensionless pa-

rameter BiT (curve in Fig. 3). This parameters is equal to the

ratio of the total contact conductance rchNJi of a nanotube

at all contacts it has with other CNTs to the intrinsic con-

ductance of the nanotube, kTAT=LT . By analogy with the

classical interfacial heat transfer problems, BiT can be

referred to as a Biot number for a nanotube. It is common to

assume that the thermal transport processes in a body with a

small Biot number are governed by the contact heat transfer,

while the body itself can be considered to be isothermal.30

Since BiT characterizes an individual CNT, it can be used as

a measure of nonuniform distribution of temperature in an

individual nanotube, while a material composed of multiple

CNTs can support a substantial temperature gradient regard-

less of BiT . Equation (5) shows that the effect of the intrinsic

conductivity of a CNT on the overall conductivity of the

CNT material vanishes at BiT ! 0, e.g., k=k0 > 0:99 at

BiT < 0:1. The Biot number BiT increases with increasing

material density and LT and it can be fairly large for real

materials even if the ratio of the conductance at a single con-

tact to the intrinsic nanotube conductance, Bic, is small.

The predictions of Eq. (5) are illustrated in Fig. 4, where

the solid curves show the dependence of k on LT for 3D sam-

ples composed of (10,10) CNTs for three values of material

density q, typical of the CNT films and buckypaper (density

is calculated as q ¼ 2pRTLTmnrnV , where m is the mass of a

carbon atom). At small LT , k practically coincides with k0

(dashed curves in Fig. 4) and scales quadratically with both

q and LT (k0 ¼ ðrc=RTÞp�n2
V=36 for 3D samples17). An

increase of LT at a fixed q also increases BiT and results in

the deviation of k from k0 as BiT approaches and exceeds

unity. In the limit of infinitely large BiT , the conductivity

approaches the asymptotic value of k1 ¼ ð1=3Þ
ðAT=ðpRT

2ÞÞkT/, where / ¼ pR2
TLTnV is the volume frac-

tion of nanotubes and, thus, k becomes independent of LT

and linearly proportional to q. Thus, Eq. (5) describes a

gradual transition between the two limiting scaling laws, k /
q2L2

T at BiT ¼ 0 and k / q at BiT !1. Parts of the depend-

ences at �nV < 1 are shown in Fig. 4 by dash-dotted lines,

since the quadratic scaling law for k0 is derived in Ref. 17

for dense systems and can not be applied close to the perco-

lation threshold.31

While Eq. (5) is derived for an idealized system of ran-

domly dispersed straight CNTs, it can also be applied for a

semi-quantitative description of continuous networks of bun-

dles characteristic of real CNT materials22–24 and generated

in mesoscopic simulations.19,20 To apply Eq. (5) to a network

of CNT bundles, the values of hNJi and rc have to be

defined. Taking a sample composed of 1-lm-long (10,10)

CNTs with a density of 0.2 g cm�3 as an example, hNJi ¼
75:1 can be obtained by counting the number of CNTs that

are in thermal contact with each other (are within the cutoff

of the “heat transfer” function wðrÞ from each other). This

value is almost two times smaller than hNJi ¼ p�nV 
 132 in

a 3D system of straight nanotubes with the same density pa-

rameter, �nV 
 42, but is still sufficiently large to ensure a

substantial deviation of k from k0. For the contact conduct-

ance rc, instead of a single value used in the analysis of ran-

dom arrangements of straight CNTs, the network of bundles

exhibits a fairly broad distributions of inter-tube conductance

rcij with a sharp maximum at rmax ¼ 257 W K�1 (Fig. 5).

Distributions of rcij for samples with LT ¼ 200 nm and

FIG. 4. Dependences of thermal conductivity of 3D samples composed of

straight randomly distributed (10,10) CNTs on CNT length LT calculated

with Eq. (5) for kT ¼ 2000 Wm�1 K�1 (solid curves) and kT ¼ 1 (BiT ¼ 0,

dashed curves) at rc ¼ 5� 10�11 W K�1 and density q ¼ 0:02 g cm�3 (red

curves), 0.2 g cm�3 (green curves), and 1 g cm�3 (blue curves). The red and

green circles mark nanotube length that corresponds to �nV ¼ 1 at a given q.

The values calculated with Eq. (5) at �nV < 1, when the system is close to the

percolation threshold and the quadratic scaling of k0 with LT is not valid, are

shown by dash-dotted lines.

FIG. 5. Probability density function of contact conductance rcij between a

pair of nanotubes in a sample with density of 0.2 g cm�3 generated in a

mesoscopic simulation and composed of (10,10) CNTs with LT ¼ 1 lm.

rmax ¼ 257 pW K�1 corresponds to the maximum of the distribution,

hrciji ¼ 1607 pW K�1 is the value of conductance averaged over all pairs of

CNTs that are in thermal contact with each other.
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LT ¼ 400 nm have shapes similar to the one shown in Fig. 5

but are slightly shifted towards smaller rcij. The values of

rcij in a vicinity of rmax are characteristic of CNTs that serve

as interconnections between bundles and play an important

role in defining the overall conductivity of the material. The

thermal contacts with rcij � rmax corresponds to CNTs that

belong to the same bundle and play a limited role in the heat

transfer, since the temperature difference between such

CNTs is small (Fig. 1). One can expect that the effective

value of rc should be between rmax and the average value

hrciji ¼ 1607 W K�1. The effective rc can also be obtained

from the condition of equity of k0 calculated for the network

of bundles and a random 3D system of straight CNTs at the

same density. This condition yields rc ¼ 886:5 W K�1,

which is close to ðrmax þ hrcijiÞ=2. With this rc and

hNJi ¼ 75:1, the values of k plotted as a function of BiT (dia-

monds in Fig. 3) are in a good quantitative agreement with

prediction of Eq. (5). Similar analysis performed for samples

with smaller LT (triangles and squares in Fig. 3) supports the

conclusion that Eq. (5) is suitable for the description of ther-

mal conductivity of continuous networks of CNT bundles.

In summary, mesoscopic simulations predict a strong

effect of the intrinsic thermal conductivity of individual CNTs

on the overall conductivity of CNT network materials. Theo-

retical analysis of systems composed of straight randomly dis-

persed CNTs explains the origin of this effect and yields an

equation that describes the dependence of the contribution of

kT to k on the CNT length and material density. The equation

is also shown to be suitable for semi-quantitative description

of thermal conductivity of continuous networks of bundles

characteristic of real CNT films and buckypaper. The theoreti-

cal analysis and mesoscopic simulations demonstrate that for

a CNT system composed of nanotubes with the characteristic

length on the order of micrometers the intrinsic CNT conduc-

tivity rather than contact conductance is defining the overall

thermal conductivity of the material.
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25J. Che, T. Çağın, and W. A. Goddard III, “Thermal conductivity of carbon

nanotubes,” Nanotechnology 11, 65–69 (2000).
26S. Maruyama, “A molecular dynamics simulation of heat conduction in fi-

nite length SWNTs,” Physica B 323, 193–195 (2002).
27G. Zhang and B. Li, “Thermal conductivity of nanotubes revisited: Effects

of chirality, isotope impurity, tube length, and temperature,” J. Chem.

Phys. 123, 114714 (2005).
28I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, “Excluded vol-

ume and its relation to the onset of percolation,” Phys. Rev. B 30,

3933–3943 (1984).
29L. Berhan and A. M. Sastry, “Modeling percolation in high-aspect-ratio

fiber systems. I. Soft-core versus hard-code models,” Phys. Rev. E 75,

041120 (2007).
30F. Kreith and M. S. Bohn, Principles of Heat Transfer (6th ed., Brooks/

Cole Pub., Pacific Grove, 2001).
31The percolation threshold in a 3D random system of soft-core spherocylin-

ders depends on RT=LT , e.g., percolation occurs at �nV ¼ 0:38

(hNJi ¼ 1:19) for RT=LT ¼ 0:003 and at smaller �nV for smaller RT=LT [Z.
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