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Abstract

Thermal transport across interfaces is becoming increasingly important with the advent of nanostructures and nanocomposite mate-
rials. A nonequilibrium molecular dynamics (NEMD) approach is developed to investigate thermal transport across solid–solid inter-
faces. Thermal boundary conductance is calculated for a range of mismatched interfaces and compared to the diffuse mismatch
model (DMM). The interfacial conductance decreased with increasing mismatch, as expected. The DMM fits the NEMD results well
for poorly matched interfaces at a temperature approximately half of the melting temperature of the material, but it underpredicts
the conductance for highly matched interfaces. One of the key findings of this study is that there is a significant interfacial thermal trans-
port dependence on temperature in the NEMD simulations, which is not accounted for by the mismatch models where only elastic scat-
tering is considered. For large lattice mismatches that resulted in numerous defects at the interface, the thermal interfacial conductance
dramatically decreased for interfaces with similar vibrational density of states. The presence of the defects had a minimal impact on the
thermal transport for highly mismatched interfaces. Interface mixing improves thermal transport by nearly a factor of two for mixing
depths of 20 atomic planes for highly mismatched interfaces.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the advent of nanoscale devices and structures, we
are having to increasingly make the shift from macroscopic
thermal transport models to models and theories based on
microscopic principles [1,2]. This is particularly the case
with the growing interest in nanocomposites and superlat-
tices [3]. In such structures, interfaces can dominate the
overall thermal resistance compared to the thermal resis-
tances associated with the constituent materials. The inter-
face thermal resistance, often referred to as thermal
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boundary resistance, RBD, or Kapitza resistance, can vary
widely depending on both the microstructure of the inter-
face and the materials utilized. Thermal boundary resis-
tance creates a temperature drop, DT , across an interface
between two different materials when a heat flux is applied.
The inverse of thermal boundary resistance is known as
Kapitza conductance, hBD, or thermal boundary conduc-
tance. The heat flux, q00, across an interface can be
expressed by the following equation:

q00 ¼ hBDDT ¼ 1

RBD

DT : ð1Þ

Thermal resistances for solid–solid interfaces, RBD, are
typically 10�9–10�7 m2 K/W at room temperatures, which
are not to be confused with contact resistances. Contact
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Nomenclature

a lattice parameter
A single measurement
c phonon propagation speed
C scaling factor
Cp specific heat
DELTAE energy added to bath atoms per time step
E energy
F ij force acting on atom i due to atom j

g phonon density of state per unit volume
�h Planck’s constant
hBD Kapitza or thermal boundary conductance
k number of atoms in regions of interest
kB Boltzmann constant
l indexing integer
m particle mass
M # of measurements made
n Bose–Einstein distribution function or atomic

number density
N number of particles in bath
q00 heat flux across an interface
r distance
rc cutoff distance
Rij distance between atoms i and j

Rh Debyte temperature ratio
SE percentage standard error
t time
T temperature
U interatomic potential function
utotal energy per unit volume of a subsystem
v; ~V particle velocity
VAF velocity autocorrelation function
XL,YL crystal width in x- and y-directions
h i expected value

Greek symbols

a transmission coefficient incident on an interface
Dt simulation time step

e energy parameter for the LJ potential
c phonon incidence angle or scaling factor for

bath
hD Debye temperature
q density
r lattice parameter for Lennard-Jones potential or

statistical error
s autocorrelation time
x angular frequency of phonon

Subscripts

0 initial
1 side one of interface or first decay process
2 side two of interface or second decay process
A side A of interface
AA atom of type A to atom of type A
AB atom of type A to atom of type B
B side B of interface
BB atom of type B to atom of type B
b bath atoms
D Debye
E due to elastic scattering
eff effective
hBD thermal boundary conductance
i interface or indexing integer
I due to inelastic scattering
j phonon polarization
l longitudinal polarization
LJ Lennard-Jones potential
max maximum sustained phonon angular frequency

of material
t total or transverse polarization
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resistances, which are associated with poor mechanical con-
nection between two materials, are typically one or more
orders of magnitude larger than thermal boundary resis-
tances. Although the interface resistances are small, they
become critical in structures where there are numerous
interfaces. This is especially the case for devices with multi-
ple interfaces such as superlattices [4] and ultra large scale
integrated circuits. Specific applications where interface
resistances are currently being considered include thermo-
electrics [5–11], thin-film high temperature superconductors
[12–15], vertical cavity surface emitting lasers [16], and opti-
cal data storage media [17]. As nanotechnologies take more
of a foothold, more applications are sure to follow.

The primary energy carriers in semiconductors and
dielectric materials are acoustic phonons. Consequently,
the hBD of dissimilar dielectric materials is often reduced
because of the scattering of phonons at the interface. There
have been several theoretical models developed to estimate
the hBD of interfaces. The first of these theories is the acoustic
mismatch model (AMM) developed in 1952 by Khalatnikov
for liquid helium–solid interface [18] and later altered by Lit-
tle for interfaces of dissimilar solids at low temperatures [19].
This model assumes that each solid can be treated as a con-
tinuum with a perfect interface. The incident phonons are
treated as plane waves, for which transmission and reflection
probabilities are calculated, and there is no scattering at the
interface. A more recent model called the diffuse mismatch
model (DMM) was developed and is generally more applica-
ble at higher temperatures. This model assumes complete
diffuse scattering at the interface [20]. The transmission



Fig. 1. Comparison of two boundary conditions considered: (a) fixed
boundary conditions in the z-direction. The edge of the structure consists
of four atomic planes of fixed ‘‘wall” atoms (black) and four atomic planes
used for the hot and cold bath atoms (dark grey and light grey). Typically,
six atoms were used in the bath, but only four are shown here, (b) periodic
boundary conditions, which simulates an infinite number of repeating
interfaces in the z-direction, the heating and cooling bath atoms generally
consisted of six atomic planes (dark grey and light grey).
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probability is then related to the density of phonon states on
both sides of the interface. Diffuse scattering is more impor-
tant at higher temperatures and for non-perfect interfaces.
Experiments indicate that the DMM does not fully capture
all the thermal transport mechanisms occurring at the inter-
faces [21–23].

Early computational efforts utilized lattice-dynamics
calculations to numerically determine the hBD under the
assumptions of harmonic oscillations and elastic scattering
[24–28]. Molecular dynamics simulations (MDS) began to
be used as a means of understanding hBD and investigating
transport in more realistic anharmonic crystal models,
while having systematic control over interfaces, which is
difficult to do experimentally. One of the earliest of these
studies by Picket et al. was developed to better understand
the low thermal resistance of chemical vapor deposited dia-
mond films [29]. Maiti et al. ran MDS to gain insight on the
hBD across Si grain boundaries [30]. Using MDS Daly et al.
examined thermal conductivity of superlattices and found
that interfacial roughness of a few monolayers resulted in
a significant decrease in the hBD [31]. Schelling et al. utilized
MDS to determine phonon transmission coefficients as a
function of phonon frequency using the Stillinger–Weber
potential [32]. They showed good agreement between their
model and AMM results for low frequency phonons, but
found large deviations for the high-energy phonons that
dominate the thermal energy transport at room tempera-
ture. Liang and Sun [33,34] and Twu and Ho [32] have
done some preliminary work on the impact of interface dis-
order Choi and Maruyama conducted MDS on epitaxial
interfaces [35].

This study develops one of the most comprehensive ser-
ies of molecular dynamics simulations to gain insight into
thermal transport at interfaces between dissimilar materi-
als. The results are compared to the DMM, which is the
model typically used for engineering purposes for interface
transport at room temperature. To date, there has not been
a direct comparison between the DMM and NEMD simu-
lations. The relationships between the thermal transport,
temperature, and interface disorder are also considered,
which have had limited attention in previous works.

2. Molecular dynamics simulation method

There are two MDS approaches which can be used to
conduct thermal boundary resistance simulations. The first
approach is to create a temperature gradient across an
interface by either adding a constant amount of energy to
a thermal bath of atoms on one side of the structure while
removing the same amount on the other side or by holding
the thermal baths of atoms at the two ends of the simula-
tion structure at some desired temperatures. Once steady
state in the system is reached, Fourier’s law is applied. This
technique is often called the direct method or nonequilib-
rium molecular dynamics (NEMD). The NEMD approach
is described by Chantrenne and Barrat for determining
thermal conductivity in nanostructured materials [36]. This
approach is directly analogous to the way we would exper-
imentally measure thermal conductivity in macroscopic
materials.

The second approach is an equilibrium approach that
makes use of the Green–Kubo (GK) method. At equilib-
rium, the thermal current at any particular location will
fluctuate about zero. The time between fluctuations is then
related to thermal transport properties of the material. The
GK or equilibrium approach is described in detail by Fren-
kel and Smith [37] and McQuarrie [38]. It is not clear
whether the GK approach is suitable for determining ther-
mal properties of inhomogeneous systems (grain bound-
aries, superlattices, and interfaces). Schelling et al.
compared the two techniques for measuring thermal con-
ductivity in Si and found little difference between the two
approaches and good agreement with experimental values
[39]. The NEMD approach is employed in this work and
applied to a range of interfaces.

2.1. NEMD approach

The NEMD approach taken in this study is to apply a
temperature gradient across an interface of two materials
(A and B) as shown in Fig. 1. This leads to a temperature
drop at the interface, which can then be used to calculate
the thermal boundary conductance using Eq. (1). A simu-
lation consists of scaling the initial velocities of the system
to achieve a desired temperature [37]. The crystal is then
allowed to equilibrate. An energy flux is then applied and
the system is allowed to reach a steady state condition.
The system is then held in the steady state condition for
several time steps to get a statistical measure of tempera-
ture and to reduce uncertainties in the measurement of hBD.

Periodic boundary conditions are used in x- and y-direc-
tions as defined in Fig. 1. This simulates an infinitely large
slab in these directions. Both fixed and periodic boundary
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conditions are considered in the z-direction as shown in
Fig. 1a and b, respectively. For the fixed boundary condi-
tion case, four atomic planes on the far edges of the simu-
lation cell were fixed, which simulates infinite adiabatic
walls. These wall atoms are shown in black in Fig. 1a. Next
to the fixed walls are the hot and cold baths, which typi-
cally consisted of six atomic planes. Alternatively, periodic
conditions are used in z-direction (normal to the interface),
as shown in Fig. 1b, simulating an infinite array of parallel
interfaces with heating and cooling zones located in the
middle of crystallites A and B, respectively. Six atomic
planes were typically used for the heating and cooling
baths, as described in more detail below. Both the fixed
and periodic boundary condition approaches have been
used to measure the thermal conductivity and hBD

[34,36,40–43]. In this study, it was found that both the fixed
and periodic boundary conditions produce results within
the uncertainty of the NEMD experiments as long as the
crystal size was chosen appropriately. The crystal size
was chosen by increasing the size in all three dimensions
until there was no statistically significant size effect on the
results of the simulations. The crystal size typically used
in this study had widths of 10 atomic planes and a length
of 80 atomic planes.

The pair-wise Lennard-Jones (LJ) potential was used to
describe the interatomic interaction on both sides of the
system. To minimize computational effort, the interatomic
potential function was terminated at 2.5r, where r is the LJ
lattice parameter, and a cutoff function suggested by Stod-
dard and Ford [44] was used to ensure that the potential
and forces are continuous at the cutoff distance of
rc ¼ 2:5r:

U ¼
XN
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where Rij is distance between atoms i and j, and e and r are
parameters defining the energy and length-scales of the
potential function.

Parameters for the interaction between atoms of differ-
ent types were defined using the Lorentz–Berthelot rules,
eAB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eAAeBB
p

and rAB ¼ ðrAA þ rBBÞ=2 [45]. Although
the LJ potential provides a realistic description of only a
limited number of real systems (inert gases, van der Waals
interaction in molecular systems), it is often used to model
other systems when general effects rather than properties of
a specific material are of interest. Since this study is primar-
ily interested in the fundamental mechanisms of thermal
transport across solid–solid interfaces and not hBD of a
particular interface, the LJ potential was used to account
for the general anharmonic nature of real materials, which
has not been accounted for in earlier harmonic models. In
addition, because the intent of this work is to be general,
NEMD hBD results are presented in non-dimensional units,
otherwise known as LJ reduced units,
r� ¼ r=r; E� ¼ E=e; T � ¼ kBT=e;

t� ¼ t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ðmr2Þ

p
; x� ¼ x�

ffiffiffiffiffiffiffiffiffiffiffiffi
ðmr2Þ

p
=e; h�BD ¼ hBD

m1=2r3

e1=2kB

ð3Þ
where m, r, and e are mass and the two LJ parameters of
side A atoms and E, T, t, and x are energy, temperature,

time, and angular frequency, respectively. The ‘‘*” is not
used in the remaining text and reduced units are implied
unless specified otherwise.

Most interfaces were generated by starting with an fcc
structure and assigning atoms to a particular atom type
defined by the three parameters, m, r, and e. This allows
a wide range of interface mismatches to be generated. In
all cases, the interfaces were oriented along the (001) crys-
tallographic plane. The equations of motion for all atoms
in the system were integrated using the Nordsieck–Gear
fifth-order predictor–corrector algorithm [45].

There are a few options for creating a steady state
temperature gradient across the interfaces. The general
approach that has been used by several groups to simulate
thermal conductivity and hBD is to define a bath of atoms
on both sides located far away from the interface or area
of interest [36,40,41,43,46,47]. Energy is then deposited or
removed at each time step in these baths. As in the case
of Fig. 1, the dark grey atoms are the heated bath, while
the grey atoms are the cooled bath.

The simplest approach to regulating the baths is to
define a desired heat flux and to add energy to the hot bath
and remove the same amount of energy from the cold bath
at each time step. In this case, the fixed energy added and
removed per time step is

DELTAE ¼ q00 � XL � YL � Dt ð4Þ

where XL, YL are the dimensions of the computational cell
in the x- and y-directions, and Dt is the simulation time
step. The fixed amount of energy is added by scaling the
velocity of each atom in the baths using a technique devel-
oped by Ikeshoji and Hafkjold [46], which ensures conser-
vation of momentum. Ikeshoji and Hafskjold assume that
a single type of atom is used in the bath. One of the major
disadvantages of this approach is that the final steady state
temperature across the structure is unknown at the begin-
ning of the simulation making it difficult to change the
interface temperature systematically. In addition, at low
temperatures errors can also occur due to the generation
of imaginary scaling factors.

The second set of approaches maintains the temperature
of the baths and avoids the problems associated with a con-
stant heat flux approach. Initially the two baths are heated
to the desired temperatures by scaling the velocities using a
modified Ikeshoji and Hafkjold method where instead of
having a constant heat flux, the energy added is defined as

DELTAE ¼ c
3

2
kBNðT 0 � T bÞ ð5Þ



Fig. 2. Velocity distributions for a typical simulation at steady state
conditions compared to the Maxwell–Boltzmann distribution functions at
the average atomic plane temperature. The temperatures used to calculate
the distribution are the average temperatures for the atomic plane during
for the simulation. Distributions are based on sampling all atoms in a
plane at 20,000 uncorrelated times: (a) distribution for an atomic plane in
the middle of side A, and (b) distribution for an atomic plane immediately
adjacent to the interface on side A.
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where Tb is the current bath temperature and is defined as

T b ¼
XN

i¼1

miv2
i

3kBN
ð6Þ

in accordance with the equipartition principle, and c is a
scaling factor inversely related to the time of temperature
relaxation of the bath (�1). N, m, v, and kB are the number
of particles in the bath, the mass and velocity of an atom,
and the Boltzmann constant. Once the baths reach the de-
sired temperature, the temperatures are then controlled by
either a simple velocity scaling or by the Gaussian thermo-
stat method [48]. Both methods were utilized in this work
and it was found that there were negligible differences in
the two approaches.

During the time when the system is approaching a
steady state condition, which is typically on the order of
106 time steps for a large system, the total pressure is main-
tained at zero using the Berendsen barostat scheme [49].
Pressure control was terminated shortly before the begin-
ning of the data collection for hBD.

2.2. Calculating thermal boundary conductance

To determine the hBD for a particular interface using the
NEMD approach, the heat flux, q00, and temperature drop,
DT , across the interface must be measured at the steady
state condition. The steady state average q00 can be assumed
to be the total energy added to the hot bath divided by the
cross-sectional area of the cell and the total time during the
measurement:

q00 ¼ 1

XL � YL � Dt � N t

X
N t

DELTAE ð7Þ

where Nt is the total number of simulated time steps.
Lukes et al., when conducting thermal conductivity sim-

ulations, found that the heat flux calculated using Eq. (7)
differed slightly from the heat flux calculated using equa-
tions of Irving and Kirkwood [50]. They attributed this
error to small nonzero fluxes that occur in the x- and
y-directions. But under the periodic boundary conditions,
these fluxes should never leave the system and energy
should be conserved. To verify Eq. (7), the actual energy
flux across the interface in NEMD can be calculated by
considering the work per unit time exerted by atoms from
one side of the interface on the ones on the other side of the
interface [51]:

q00 ¼ 1

XL � YL � N t

X
N t

X
i2side

X
j2sideA

~F ij~vi ð8Þ

where ~F ij is the force acting on atom i due to atom j, and vi

is the velocity of atom i.
In all boundary condition and temperature control cases

described above, there was negligible difference between
Eqs. (7) and (8) when averaged over many time steps once
the steady state was reached. Eq. (8) is used to calculate the
steady state fluxes throughout the remaining portion of this
text and is normally averaged over several million time steps.
The temperature drop across the interface is determined
by first calculating the temperatures for each atomic plane
parallel to the interface using the same Eq. (6) as for the
bath atoms, where N in this case is the number of atoms
per plane. Although a nonequilibrium approach is used,
local thermal equilibrium and hence local temperature
can still be defined when data are averaged over many time
steps and for moderate heat fluxes. Typically, temperature
drops across the entire structure are held to 0.05. Thermal
equilibrium is characterized by the Maxwell–Boltzmann
velocity distribution. To confirm the local thermal equilib-
rium, the velocity distributions of atoms belonging to par-
ticular atomic planes are calculated and compared to the
Maxwell–Boltzmann distributions. Fig. 2 shows the veloc-
ity distributions for a typical simulation for an atomic
plane in the middle of side A and adjacent to the interface
on side A at the steady state condition. The distributions
are described well by the Maxwell–Boltzmann distribution



Fig. 3. Typical temperature profile observed in a NEMD simulation of
thermal boundary resistance. Triangles are for atoms of type A and circles
are for atoms of type B. Areas in the shaded regions are the atomic planes
that are heated and cooled, respectively. The figure shows how DT is
defined for hBD calculation.
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functions at the respective plane temperatures, indicating
that the local thermal equilibrium assumption is valid.

A typical temperature distribution observed in the
steady state regime is shown in Fig. 3. There is a tempera-
ture drop at the interface as expected. The thermal bound-
ary resistance is calculated by first performing a linear least
squares fit to the temperature distribution for both parts of
the system and then looking at the difference between the
two linear fits at the interface. The two atomic planes on
either side of the interface and adjacent to the heating/cool-
ing baths were not included in the fitting. This strategy,
similar to the one used by Twu and Ho [34], is true to
the way the continuum Fourier model would be applied
with an interface boundary condition.

2.3. Error and uncertainty analysis

As with all measurements, there will be errors in the
measured DT and q00 and therefore errors in hBD. NEMD
errors can include both systematic and statistical errors
[52]. Systematic errors are due to the finite-size effects,
interaction cutoff, and numerical integration round off.
For a discussion on the size effects and numerical errors,
see Stevens [53]. Interaction cutoff error is not relevant to
this study since the purpose is not to examine a specific
material system but to elucidate general trends in the
behavior of interfaces.

Statistical errors are due to random uncorrelated fluctu-
ations in the data sampling. The statistical error in hBD is
given by

rhBD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
hq00i

ohBD

ohq00i

� �2

þ r2
hDT i

ohBD

ohDT i

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
hq00i

1

hDT i

� �2

þ r2
DT

hq00i
hDT i2

 !2
vuut ð9Þ
where r2 is the variance for the expected heat flux or inter-
face temperature drop. The expected value of any property
A, hAi, such as DT or q00, can be determined by

hAi ¼ 1

M

XM

i¼1

Ai ð10Þ

where Ai is a single measurement and M is the number of
measurements made. The expected variance of hAi can be
determined by

r2
hAi ¼

1
M�1

PM
i¼1ðAi � hAiÞ2

h i
M

ð11Þ

where Ai are completely uncorrelated measurements. To
ensure measurements are uncorrelated, measurements of
Ai should be made at time steps greater than the correlation
time. The percentage standard error in the estimate given
by Eq. (9) is then

SE ¼ rhAi
hAi

����
����: ð12Þ

Consider an interface with two materials that have identi-
cal LJ parameters and a mass ratio of 1:25 where data
was collected over five million time steps. The heat flux
was sampled by averaging Eq. (8) for each 5000 time steps,
giving a sample size of 1000. The time between samples is
significantly longer than the correlation time, which is on
the order of 100 time steps. For most cases, the SE in the
heat flux based on Eq. (12) was less than 1%.

The standard deviation of DT is

rDT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

T A

oDT
oT A

� �
þ r2

T B

oDT
oT B

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

T A
þ r2

T B

q
ð13Þ

where r2
T A

and r2
T B

are the variances associated with the
least squares fits for sides A and B, respectively. The stan-
dard error for DT in most simulation runs was typically less
than 5%. Therefore, the total standard error in hBD based
on Eq. (9) is typically 6% or less. To verify this uncertainty,
five separate simulations were conducted on the same inter-
face and the standard error in hBD was determined for this
sample of five observations to be 8% of the average hBD.
Therefore, it is reasonable to assume that the statistical
uncertainty for all simulations is approximately 6–8%.

3. Atomically perfect interfaces

Using the NEMD tools presented above, the effects of
temperature and vibrational mismatch between two differ-
ent materials on thermal transport at an interface can be
determined without the introduction of other possible
influences such as interface defects, strain, varying inter-
atomic potentials, or electron scattering, which is nearly
impossible to do experimentally.

The simplest and most straightforward way to vary the
vibration states on either side of an interface is to vary the
mass ratio of A and B atoms while holding the LJ energy, e,
and lattice, r, parameters constant. Changing the mass of



Fig. 4. Thermal boundary conductance as a function of Rh for the two
materials forming an atomically perfect interface.
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the atoms directly affects the vibrational (phonon) spec-
trum of the crystal, which gives the flexibility to investigate
the effects of phonon frequency mismatch on hBD. Fre-
quencies of atomic vibrations are inversely proportional
to m1=2, so that the ratio of Debye temperatures, Rh, for
any two simulated atom types is equal to ðmA=mBÞ1=2. Thus
Rh is a qualitative indicator of how well the phonon spectra
of the two sides overlap.

The mass ratios for the interfaces considered were
mA=mB ¼ 0:5, 0.25, 0.16, 0.08, and 0.04 resulting in cutoff
frequency ratio or Rh values of 0.707, 0.5, 0.4, 0.28, and
0.2, respectively. The diamonds in Fig. 4 show how hBD

varies with Rh at a reduced temperature of the interface
equal to 0.25 for atomically perfect interfaces. To give a
qualitative sense of what a temperature of 0.25 is, note that
for LJ solids the melting temperature is approximately 0.5.
Note that hBD is given in reduced units based on the side
with the minimum cutoff frequency. There is more than
one order of magnitude difference between hBD for the sam-
ple interfaces simulated. The wide range in the results is
consistent with the DMM for interfaces with Debye ratios
less than 0.6, but has yet to be observed experimentally at
high temperatures. The dashed and solid curves shown in
Fig. 4 represent the results of computations with the
DMM under two different scenarios, one assuming a
DOS given by the Debye model, and the other assuming
a more realistic DOS determined from MDS. Detailed dis-
cussion of the calculations performed with the DMM is
given below.
3.1. Comparison with DMM

To compare the NEMD results with the DMM and real
interfaces, physical properties must be extracted for the
simulated materials. Consider the DMM [20,23],

hBD;1 ¼
1

2

X
j

o

oT

Z p=2

0

Z -max

0

g1;jðxÞnðx; T Þ�hxc1;ja1;jðc; j;xÞ

� cosðcÞ sinðcÞ dx dc ð14Þ
where g is the phonon density of states, n is the Bose–Ein-
stein distribution function, �h is the Planck’s constant, x is
the phonon angular frequency, c is the phonon propaga-
tion speed, a is the transmission probability, c is the
incident angle, and j is the phonon polarization. For the
DMM, it is assumed that the phonon transmission proba-
bility, a, is independent of the incidence angle. It is also
assumed that the phonon propagation speeds, c1;j, are inde-
pendent of direction. This last condition is really only valid
for highly polycrystalline or amorphous materials, but in
the MDS case the assumption will be made that the prop-
agation speed is approximately equivalent to the speed of a
traveling wave in the [100] direction for each polarization.
With these assumptions Eq. (14) reduces to

hBD;1 ¼
1

4

X
j

o

oT

Z -max

0

g1;jðxÞnðx; T Þ�hxc1;jaðj;xÞ dx:

ð15Þ

Also, in the classical limit, the vibrational states will be
occupied in a linear fashion with respect to temperature,
which is the functional form of the Bose–Einstein distribu-
tion in the high temperature limit. In order to apply Eq.
(15) to the MDS, g1;jðxÞnðx; T Þ, c1;j, and a must be speci-
fied. These can be determined by two different methods.
The first is to assume a Debye solid, so that the vibrational
density of states and transmission coefficient will be depen-
dent on the phonon propagation speeds. This approach is
simpler, allows the separation of longitudinal and trans-
verse polarizations, and is in the same spirit as much of
the past experimental work. The second approach involves
measuring the vibrational density of states and measuring
the propagation speed for each simulated crystal. These
values are then used to calculate the transmission coeffi-
cient and hBD.

3.1.1. Debye approximation

The Debye approximation assumes the phonon velocity
to be constant for each polarization type. For Debye solids,
the density of states is [54]

gjðxÞ ¼
x2

j

2p2c3
j

: ð16Þ

In the classical limit and under the harmonic approxima-
tion the heat capacity for each polarization, Cp;j, can be
found by differentiating the thermal energy associated with
each polarization as follows:

Cp;j ¼
d

dT

Z xD;j

0

g1;jðxÞnðx; T Þ�hx dx

¼
Z xD;j

0

Cx2

2p2c3
j

�hx dx ¼
C�hx4

D;j

8p2c3
j

� nkB ð17Þ

where xD;j, n, and C are the Debye frequency of polariza-
tion j, the number density, and the proportionality con-
stant. For LJ solids, as will be discussed below, the
energy associated with each degree of freedom in the
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crystal is �(1.1)nkB due to anharmonicity of the crystal, so
the proportionality constant is:

C ¼ ð1:1Þ
8p2c3

j kBn

x4
D;j�h

: ð18Þ

The Debye solid transmission coefficient is [23]

aAðxÞ ¼
P

jc
�2
B;jP

jc
�2
B;j þ c�2

A;j

: ð19Þ

Substituting Eqs. (17)–(19) into Eq. (15) leads to

hBD;1 � ð1:1Þ
nkB

4

X
j

c1;jc�2
2;j x

4
max;j

ðc�2
1;j þ c�2

2;j Þx4
D;1;j

ð20Þ

where xmax;j is the smallest of the two cutoff frequencies at
both sides of the interface for vibrational polarization j and
xD;1;j is the Debye frequency for side one and polarization j.
Consider the selection of side one such that xD;1;j < xD;2;j,
which is the same as hD;1 < hD;2. For LJ solids this can be
expressed as:

1

r1

e1

m1

� �1=2

<
1

r2

e2

m2

� �1=2

: ð21Þ

For the case of Eq. (21), xmax;j ¼ xD;1;j, so Eq. (20) reduces
to

hBD ¼ ð1:1Þ
nkB

4

X
j

c1;jc�2
2;j

ðc�2
1;j þ c�2

2;j Þ
: ð22Þ

For fcc LJ solids with a cutoff distance of 2.5r, the number
density is

n ¼ 4

a3
¼ 4

ð
ffiffiffi
2
p
ð1:09574rÞÞ3

¼ 1:075

r3
: ð23Þ

There are two options for determining the propagation
velocities for both the longitudinal and transverse polariza-
tions. The first is to use the elastic stiffness constants or
moduli of elasticity. For propagating elastic waves in the
[100] direction the longitudinal and transverse velocities
are [54]:

cl ¼ ðC11=qÞ1=2 ð24Þ
ct ¼ ðC44=qÞ1=2 ð25Þ

where the l and t are the longitudinal and transverse polar-
izations, q is the density, and C11 and C44 are two of the
moduli of elasticity and can be measured from numerical
simulations using a technique described by Frenkel and
Smit [37]. Based on simulations and using Eq. (23) the
propagation speeds in the [100] direction for LJ solids are

cl ¼ 9:53ðe=mÞ1=2 ð26Þ
ct ¼ 7:20ðe=mÞ1=2

: ð27Þ

A second method for determining the phonon propagation
speeds is by generating wavepackets as described by Schel-
ling et al. [32,55] and adjusting the initial velocity in order
to obtain a coherent propagating wavepacket. Based on
simulations of five different samples the measured speeds
are

cl ¼ 9:79	 0:24ðe=mÞ1=2 ð28Þ
ct ¼ 6:47	 0:01ðe=mÞ1=2

: ð29Þ

Substituting Eqs. (28),(29) and (23) into Eq. (22) leads to

hBD ¼ 6:72
kB

e1

m1

� �1=2
m2

e2

� �
r3 m1

e1
þ m2

e2

� � ð30Þ

or in LJ reduced units

hBD ¼ 6:72

m2

e2

� �
m1

e1
þ m2

e2

� � : ð31Þ

The difference in the theoretical hBD when using the speeds
defined by Eqs. (26) and (27) versus Eqs. (28) and (29) is
less than 6%.

The theoretical hBD values are plotted versus different
Debye temperature ratios in Fig. 4 for a temperature of
0.25. The DMM under the Debye approximation fits the
hBD values for highly mismatched materials fairly well,
but tends to underpredict conductance for low-mismatch
interfaces by as much as a factor of two in the case of
m1 : m2 ¼ 2 : 1. This discrepancy between DMM and simu-
lated data for highly matched interfaces is due the defini-
tion of temperature assumed by the DMM. It was
pointed out by Simons [56] and later discussed in more
detail by Katerberg et al. [57], that the mismatch models
assume the phonon distributions on both sides of the inter-
face to be at equilibrium and their distribution to follow
the Bose–Einstein distribution. However, in the case of
the NEMD measurements made in this study, temperature
is measured in the interface region. The NEMD tempera-
ture contains information about waves coming deep within
either side of the interface, so that for the case of large tem-
perature gradients in the materials, the equilibrium approx-
imation becomes less valid. Again, this is only an issue for
highly matched interfaces.
3.1.2. Measured density of state and propagation speeds

An alternative to the Debye approximation is to directly
measure the vibrational DOS in MDS. The occupied vibra-
tional states are determined by conducting a Fourier-trans-
form of the atomic velocity autocorrelation function
[58,59]. The general expression for the velocity autocorrela-
tion function is

VAF ðsÞ ¼ VAF ðlDtÞ ¼ 1

k

Xk

i¼1

ð~V iðt ¼ t0Þ � ~V iðt ¼ t0 þ lDtÞÞ

ð32Þ

where s, l, k, ~V i, t0, and Dt are autocorrelation time, a po-
sitive integer, the number of atoms in the region of interest,
velocity of atom i in the region of interest, starting time in
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the calculation of the autocorrelation function, and time
step of simulation, respectively.

The measured DOS for four LJ solids with the four dif-
ferent masses used in this study are shown in Fig. 5. The
angular frequency is in reduced units, which is why the
DOS values line up with one another. In addition to chang-
ing the masses, the DOS were also calculated at several dif-
ferent temperatures to verify that gðxÞ was in fact not a
function of temperature.

The spectra can be scaled under the harmonic approxi-
mation by noting that the energy per unit volume of a sub-
system can be expressed as

utotal ¼
Z xmax

0

gðxÞnðx; T Þ�hx dx

¼
Z xmax

0

Cg0ðxÞT �hx dx ¼ 3nkBT ð33Þ

where gðxÞnðx; T Þ can be expressed as Cg0ðxÞT in the MD
case and where C is the scaling factor, and g0ðxÞ is the
unscaled spectrum. This technique does not separate the
phonon spectra into individual polarizations. The wave
propagation speed is determined by generating wavepac-
kets as mentioned above. Because the DOS is not separated
into polarizations, an effective velocity must be used, which
can be defined by

ceff ¼
2ct þ cl

3
: ð34Þ

This effective velocity definition is chosen so that Eq. (15)
will give equivalent results under the Debye approximation
regardless of whether the wave speeds are treated sepa-
rately for each polarization or as an effective polarization
for a transmission coefficient of one. Eq. (15) simplifies
with the use of Eqs. (28), (29), (33) and (34), and, in re-
duced units form, is given by

hBD;1 ¼ 6:72

R -max

0
g01;jðxÞxaðxÞ dxR -max

0
g01;jðxÞx dx

: ð35Þ
Fig. 5. Unscaled density of vibrational states for four LJ solids with
different masses.
The transmission coefficient, a(x), for the DMM can be
determined by numerically solving Eq. (15) using the mea-
sured density of states and the effective velocity defined by
Eq. (34).

Theoretical hBD values based on the measured DOS are
plotted versus different Debye temperature ratios in Fig. 4
for a temperature of 0.25. The ratios of hBD predicted in
NEMD to the theoretical values obtained with a calculated
DOS are also plotted. As in the Debye approximation
method, the theoretical model appears to work relatively
well for highly mismatched surfaces, but underpredicts
conductance for interfaces with similar materials by nearly
a factor of two. This trend differs from that observed exper-
imentally for real interfaces by Stevens et al. [60] and
Stoner and Maris [21], where measured conductances were
below the DMM theoretical values. It should be noted
that the NEMD simulations are for atomically perfect
interfaces, while the real samples are likely to contain inter-
faces that are not atomically perfect. The difference in the
trends between the NEMD approach and experiments on
real interfaces may also be due to the choice of the LJ
potential.

3.2. Temperature dependence

Although the DMM using the Debye approximation or
measured vibrational DOS appears to work well for highly
mismatched materials at a temperature of 0.25, it turns out
hBD is highly temperature dependent. In the classical high
temperature limit, hBD calculated by either the DMM
and AMM is independent of temperature. The only tem-
perature dependent part of both models is associated with
the distribution function. For these models, at tempera-
tures well above the Debye temperature hBD becomes con-
stant. Because the models do not assume any inelastic
scattering, the transmission coefficient is not dependent
on temperature. To check whether hBD is dependent on
temperature, several simulations were conducted at five
temperatures ranging from 0.08 to 0.42. The simulations
were conducted on both a highly and a slightly mismatched
interface with Debye temperature ratios of 0.2 and 0.5. The
temperature dependence of hBD is shown in Fig. 6, which
shows a strong linear relationship with hBD varying by
nearly a factor of four for both interfaces in the tempera-
ture range considered. To give a better intuitive sense of
the temperature range considered, recall that the melting
temperature for LJ solids is about T ¼ 0:5.

The strong linear dependence indicates that there is
some thermal transport mechanism that is dependent on
temperature, which leads to a larger transmission coeffi-
cient. The most likely explanation for this discrepancy is
that the DMM accounts only for the elastic scattering,
while NEMD accounts for both elastic and inelastic scat-
tering at the interface. The linear temperature dependence
indicates a scattering process that is proportional to pho-
non population, since the phonon population increases
linearly with temperature at high temperatures. In the



Fig. 6. hBD dependence on temperature for Debye temperature mismatch
ratios of 0.2 and 0.5. Data are normalized to the value of hBD at T ¼ 0:25.

Fig. 7. hBD versus Debye temperature ratio for interfaces with a LJ lattice
parameter mismatch ratio of 6:5 (squares) and no lattice mismatch
(diamonds). Also included are the DMM predictions based on the
simulated DOS and the Debye model. The inset is a portion of the
interface after being subjected to a heat treatment and then quenched.
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classical limit and for LJ potential interfaces at tempera-
tures above the Debye temperature, it appears that inelastic
scattering provides the major contribution to the energy
transport across the interface, surpassing the contribution
of the elastic scattering. Based on these results a more suit-
able model for thermal transport across interfaces in the
classical limit is

q00 ¼ ðhBD;E þ hBD;IðT ÞÞDT ð36Þ

where hBD;E and hBD;IðT Þ are the interface thermal conduc-
tance terms associated with elastic and inelastic scattering
and hBD;I is a linear function of temperature. For LJ poten-
tial interfaces, inelastic scattering appears to play a critical
role in interface thermal transport. The degree to which
inelastic scattering influences thermal transport for other
atomic potentials may vary. The increase in thermal
boundary conductance with temperature has recently been
reported experimentally by Lyeo and Cahill [61] and Hop-
kins et al. [62].

At temperatures above 0.35, the sample with a large
Debye temperature ratio had a leveling off in the measured
hBD. At first, it was believed to be some error in the simu-
lation, but a second simulation under the same conditions
but with different initial velocity distributions of the atomic
system resulted in the same lower than expected hBD within
the uncertainty of simulation. This drop off could be due to
the saturation in transport mechanisms for matched
interfaces.

4. Interface defects

The impact of the vibrational DOS and temperature on
interfacial thermal transport for atomically perfect inter-
faces was considered above. Although the analysis of the
atomically perfect interfaces provides useful insights into
the mechanisms of the thermal transport, the interfaces in
real materials are seldom atomically perfect. Most of the
reported computational studies, including both lattice
and molecular dynamics simulations have only considered
atomically perfect interfaces [24,32,51,63]. Early experi-
mental and theoretical work performed for low tempera-
tures of liquid–solid interfaces found that interfacial
defects could have a dramatic influence on thermal trans-
port. Weber et al. found that a ‘‘perfect interface” made
by cleaving LiF and NaF crystals in liquid helium resulted
in reduced phonon transport across the interface compared
to earlier measurements on non-perfect interfaces [64]. The
reduced hBD is often attributed to the loss of phonon cou-
pling on both sides of the interface because localized inter-
face states are removed. On the other hand, Pohl and
Stritzker found that, for Au–sapphire interfaces, rough-
ened interfaces resulted in a decrease in hBD at low temper-
atures [65]. Like the experimental work, computational
models have shown that defects and varying interface con-
ditions can lead to either increase or decrease in the ther-
mal boundary resistance [25,27,28,31,34]. This section
examines the impact large lattice mismatches, interface
mixing, and vacancies have on the thermal transport at
LJ interfaces.
4.1. Defects introduced by large lattice mismatches

To mimic defects associated with large lattice mis-
matches, an interface was created with a lattice mismatch
ratio of rA=rB ¼ 0:833. Side A of the system had
6 � 6 � 20 unit cells and side B had 5 � 5 � 20 unit
cells. The ends were subject to the rigid wall conditions.
The entire sample was heated to slightly above melting
(T > 0:5) for a time of 115. The sample was then quenched
for a time of 115 resulting in the formation of a thin disor-
dered layer at the interface, which were only a few atomic
layers thick. Simulations were then conducted on this inter-
face in a similar fashion as those for the mass mismatch
series described earlier.

As can be seen in Fig. 7, hBD values for the small Debye
temperature ratios obtained for the disordered interface are



Fig. 8. hBD versus interface alloying thickness. hBD is normalized to the
value of hBD obtained in a simulation with no alloying. An atomic-level
structure of an interface with four atomic planes mixed is shown in the
inset.
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comparable to the results obtained for the atomically per-
fect interfaces. However, as the Debye temperature ratio
increases and approaches a well matched interface, hBD

begins to plateau and deviate from the results obtained
for atomically perfect interfaces. The results shown in
Fig. 7 clearly indicate that the presence of defects at the
interface has the greatest impact on thermal transport for
interfaces with small frequency mismatched materials.
These results differ slightly from those reported by Petter-
son and Mahan, where they found a significant reduction
in hBD regardless of Debye temperature mismatch for lat-
tice mismatched interfaces. They used lattice-dynamic sim-
ulations that were restricted to elastic scattering (harmonic
model) and very ordered interfaces [25]. Petterson and
Mahan modeled interfaces that had perfect crystal struc-
tures on both sides of the interface without allowing for
a structural relaxation.

The small difference between the results obtained for the
disordered and atomically perfect interfaces in the simula-
tions performed for high mass mismatches (small RhÞ is
most likely related to almost complete scattering of pho-
nons incident on the interface. Although the added defects
at the interface will result in an increase in scattering at the
interface, the defects do provide an increased opportunity
for inelastic scattering to occur for the highly mismatched
interfaces. In the case of highly matched interfaces, the
defects increase scattering sites adding thermal resistance
to the interface. Similar trends were found in simulations
using a lattice mismatch ratio of 4:5.

Also included in Fig. 7 are the DMM predictions of hBD

using both the simulated DOS and the Debye model for
DOS. The DMM fits the data obtained for the defected
interface better than the ones from the atomically perfect
interface simulations. This is reasonable considering that
the primary assumption made in the DMM is the complete
diffuse scattering at the interface. The added defects due to
a large lattice mismatch appear to ensure complete scatter-
ing. Interestingly, the ratio of simulated hBD to the DMM
hBD using the measured DOS is between 0.54 and 0.60 for
all interfaces simulated with large lattice mismatches. If the
same hBD – temperature relationship exists as described
above, than the DMM would be an excellent fit for most
simulated data at a temperature of �0.45.

4.2. Interface mixing and other defects

Often an interface between two materials consists of a
region where atoms from either side of the interface diffuse
into the other side or even form a compound, as is the case
for silicides. In particular, silicide layers can be found at
Pt–Si and Cr–Si interfaces. The impact of the interface mix-
ing on thermal transport was considered by Kechrakos
[26]. Kechrakos used a lattice dynamics approach and
found that, for highly mismatched materials, interface mix-
ing improved thermal transport by as much as a factor of
three. Twu and Ho considered interatomic mixing using a
NEMD technique for interfaces between parts of the sys-
tem described by LJ and Morse interatomic potential
[34]. They found a reduction in the thermal conductance
of nearly a factor of two for one particular interface.

To investigate the impact of LJ interface mixing on hBD

values, a series of simulations was conducted at T ¼ 0:25
and Rh ¼ 0:2. Different degrees of mixing were simulated
by systematically mixing atoms in 2, 4, 6, 8, 12, 16, and
20 atomic planes. As seen in Fig. 8, hBD for mixed inter-
faces are as much as a factor of 1.8 higher than those for
atomically perfect interfaces. This increase for highly mis-
matched interfaces is most likely due to an increase in scat-
tering sites and localized interface vibrational states that
bridge the two different vibrational DOS on either side of
the interface.

Simulations were also conducted for single edge disloca-
tions per crystal, resulting in a 10% vacancy density. The
changes in hBD were less than the uncertainty in the mea-
surement. The same result was found for point vacancies
at a density of 1%, indicating that minor defects have little
impact on the overall interface thermal transport for LJ
solids.

5. Conclusions

A complete understanding of the thermal transport at
solid–solid interfaces at room temperatures is becoming
increasingly important with the growing interest in nano-
scale technologies. Suitable models of interfacial transport
would open the doors for designing engineering materials
with specific thermal properties as well as providing us with
the tools required to deal with thermal issues that will be a
part of tomorrow’s technologies. To better the understand-
ing of interface thermal transport, this study uses nonequil-
brium molecular dynamics simulations to measure thermal
transport for a range of Lennard-Jones interfaces. Initially,
simulations were conducted on atomically perfect inter-
faces for a range of mass mismatched materials. By chang-
ing the mass ratio across the interface, the respective
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vibrational states can be changed. For these ideal cases, the
interfacial conductance decreased with increasing mis-
match, as expected. The DMM appears to fit the NEMD
results well for poorly matched interfaces at a temperature
of 0.25 in LJ reduced units, but it underpredicts conduc-
tance for highly matched interfaces. This discrepancy
between the DMM and NEMD results is most likely due
to the assumption made that the temperature on one side
of the interface is strictly due to the phonons incident on
the interface, while the MDS temperature is based on all
vibrations including those traveling to and from the inter-
face. This result was predicted by Simons [56] and dis-
cussed by Katerberg [57]. In addition, the DMM
assumption of the complete diffuse scattering at the inter-
face is not valid for an atomically perfect interface.

One of the key findings of this study is that there is a sig-
nificant interfacial thermal transport dependence on tem-
perature for the NEMD LJ interfaces, which is not
accounted for by the mismatch models where only elastic
scattering is considered. The interface conductance was
found to have a linear dependence on temperature, indicat-
ing that interfacial transport is directly related to occu-
pancy of vibration states. Therefore, inelastic scattering
appears to play a critical role in the interfacial thermal
transport. The importance of inelastic scattering may be
highly dependent on the interatomic potential chosen,
which should be explored in future works.

A relaxation of a system with large lattice mismatch
was used to produce a partially disordered interface. In
this case, the thermal interfacial conductance dramatically
decreased as compared to the atomically perfect interfaces
with similar Debye temperatures or density of states. For
the case where the Debye temperature ratio was
Rh ¼ 0:85, the decrease in the interfacial thermal transport
was more than a factor of four. Large lattice mismatches
had minimal impact on thermal transport for highly mass
mismatched interfaces. This trend is in agreement with
the NEMD data for Rh > 0:5. Therefore, interface defects
must be accounted for when the Debye temperature ratio
approaches one, but are negligible for highly mismatched
interfaces.

Interface mixing improves thermal transport by nearly a
factor of two for mixing depths of 20 atomic planes for
highly mismatched interfaces. This may explain some of
the additional thermal transport observed in the NEMD
data for highly mass mismatched interfaces. However, this
does not account for the nearly two orders of magnitude
differences between the measured and DMM thermal
boundary conductance for highly mismatched interfaces
seen by Stoner and Maris [21].
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