
Proceedings of IMECE04 
2004 ASME International Mechanical Engineering Congress 

November 13–20, 2004, Anaheim, California USA 

IMECE2004-60334 

MOLECULAR-DYNAMICS STUDY OF THERMAL BOUNDARY RESISTANCE: EVIDENCE OF 
STRONG INELASTIC SCATTERING TRANSPORT CHANNELS 

 
 

Robert J. Stevens 
Department of Mechanical and Aerospace Engineering 

University of Virginia 
Charlottesville, VA 22904 

Rob_Stevens@virginia.edu 

Pamela M. Norris 
Department of Mechanical and Aerospace Engineering 

University of Virginia 
Charlottesville, VA 22904 

Pamela@virginia.edu 
 

Leonid V. Zhigilei 
Department of Material Science and Engineering 

University of Virginia 
Charlottesville, VA 22904 

lz2n@virginia.edu 

Proceedings of IMECE04 
2004 ASME International Mechanical Engineering Congress and Exposition 

November 13-20, 2004, Anaheim, California USA 
 
 

IMECE2004-60334
 

 
ABSTRACT 

With the ever-decreasing size of microelectronics, growing 
applications of superlattices, and development of 
nanotechnology, thermal resistances of interfaces are becoming 
increasingly central to thermal management.  Although there 
has been much success in understanding thermal boundary 
resistance (TBR) at low temperature, the current models for 
room temperature TBR are not adequate.  This work examines 
TBR using molecular dynamics (MD) simulations of a simple 
interface between two FCC solids.  The simulations reveal a 
temperature dependence of TBR, which is an indication of 
inelastic scattering in the classical limit.  Introduction of point 
defects and lattice-mismatch-induced disorder in the interface 
region is found to assist the energy transport across the 
interface.  This is believed to be due to the added sites for 
inelastic scattering and optical phonon excitation.  A simple 
MD experiment was conducted by directing a phonon wave 
packet towards the interface.  Inelastic scattering, which 
increases transport across the interface, was directly observed.  
Another mechanism of energy transport through the interface 
involving localization of optical phonon modes at the interface 
was also revealed in the simulations. 

Nomenclature 
 c = propagation speed of phonon, m/s 
 E = total kinetic energy of heating or cooling zone, eV 
 g(ω) = phonon density of states, s/m3 
 g’(ω) = unscaled occupied phonon density of states, s/m3 
 hBD = thermal boundary conductance, W/m2K 
 kB = Boltzmann constant 
 1   
 L = number of atoms in an atomic plane 
 m = mass of individual atoms, m/s 
 n(ω,T) = phonon occupation distribution function 
 N/V = atom number density, 1/m3 
 q&  = heat flux across interface, W/m2 
 Q = energy to be added each time step, eV 
 r = length, m 
 Rij = distance between atoms i and j, m 
 T = temperature, K 
 utotal = energy per unit volume of subsystem, J/m3 
 U = total potential energy of atomic system, eV 
 ULJ = LJ pair interaction function, eV 
 v = velocity of individual atoms, m/s 
 α = phonon transmission coefficient 
 ε = LJ energy parameter, eV 
 φ = phonon incidence angle 
 ħ = Planck’s constant, Js 
 σ = LJ lattice parameter, m 
 ω = angular frequency, 1/s 
  
Subscripts 
 
 1,2 = side one or two of an interface 
 A,B = side A or B 
 ij = atom pair index 
 j = phonon mode 
 l = longitudinal phonon mode 
 new = value for next time step 
 old = value of previous time step 
 t = transverse phonon mode 
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Introduction 
Thermal management has played a critical role in the 

development of micro and optoelectronic devices over the past 
several decades.  Much of the theory used in thermal 
management design has relied on macroscopic principles, 
where feature sizes and times are much larger than the mean 
free path and scattering time of the energy carriers.  Only 
recently, with the advent of smaller devices and structures, have 
we had to develop models and theories based on microscopic 
principles.  This is particularly the case with the growing 
interest in nanoscale and superlattice devices, where TBR can 
have a major impact on the overall thermal characteristics and 
performance of the devices.  The TBR can vary widely 
depending on the fabrication technique and types of materials 
utilized.  Precise knowledge of the TBR is required in order to 
understand fully the thermal characteristics of nanodevices and 
minimize the uncertainties in their design and performance. 

Thermal boundary resistance creates a temperature drop, 
∆T, across an interface between two different materials when a 
heat flux is applied.  This was first observed by Kapitza for a 
solid and liquid helium interface in 1941 [1].  The inverse of 
TBR is often referred to as Kapitza conductance, hBD, or 
thermal boundary conductance, TBC.  The heat flux, q& , across 
an interface can be expressed by the following equation: 

 Thq BD∆=&  (1) 

At low temperatures, the thermal diffusivity of dielectric 
materials is often relatively high because of the increasing 
scattering times and mean free paths of the thermal energy 
carriers (acoustic phonons).  At these low temperatures, TBR 
can start restricting heat transport and must be considered in 
designing thermal management strategies. 

Unlike at low temperature, at room temperature the energy 
carriers’ mean free paths are quite small (~10-100 nm) and the 
TBR is typically neglected because it is insignificant as 
compared to the thermal resistance of the bulk material.  It is 
only recently, with the advent of nanoscale devices, the TBR 
started to be considered as a significant source of thermal 
resistance at room temperature.  This is especially the case for 
devices with multiple interfaces such as superlattices [2] and 
very large scale integrated (VLSI) circuits.  Specific 
applications where TBR is currently being considered are 
thermoelectrics [3, 4], thin-film high temperature 
superconductors [5, 6], vertical cavity surface emitting lasers 
[7], and optical data storage media [8].  More applications are 
sure to follow. 

Although the first measurement of thermal boundary 
resistance was reported in 1941 by Kapitza for He-solid 
interfaces [1], it was not until 1952, when the first theoretical 
description of the phenomenon was suggested by Khalatnikov 
[9].  The description, currently known as the acoustic mismatch 
model (AMM), predicts poor phonon transport across interfaces 
when there are large differences in the density and sound 
velocity for the two interface materials, as is the case for the 
interface between liquid helium and most solids.  Although the 
model does predict significant temperature differences in the 
range of 1 K, the AMM tends to overpredict thermal boundary 
resistances for He-solid interfaces by as much as two orders of 
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magnitude.  It is not until around 100 mK, when the AMM 
becomes more inline with experiments but still off by a factor 
of three [10, 11].  Much of the deviation between theory and 
experiment has been attributed to surface contamination and 
defects that may increase phonon coupling between the He-
solid.  In fact, when extreme care was taken to create an ideal 
interface, experiments tended to measure phonon transmissions 
closer to those predicted by AMM.  For a summary of such 
experiments see Swartz and Pohl [10]. 

The AMM was extended to solid-solid interfaces by Little 
in 1959 [12].  Early work done in the 1960’s and 1970’s on 
sapphire and indium interfaces at low temperatures (~1 K) 
showed that the measured resistances were greater than the 
AMM prediction [10].  More recently, in 1987, Swartz 
measured TBR for several metal film and dielectric interfaces 
up to a temperature of 200 K [13].  Swartz found that below 
~40 K there was good agreement between the model and 
experiment, but above 40 K the model tended to underpredict 
the measured TBR. 

The AMM theory is based on the assumption that each 
solid can be treated as a continuum with a perfect interface.  
The incident phonons are treated as plane waves, for which 
transmission and reflection probabilities are calculated, and 
there is no scattering at the interface.  The AMM assumptions 
are generally reasonable at low temperatures (<10 K) and for 
perfect interfaces.  However, at higher temperatures and for 
non-perfect interfaces, where higher frequency phonons 
dominate the heat transport, scattering is highly probable.  In 
1986, Eisenmenger experimentally determined that there was 
strong scattering at interfaces for phonons with frequencies 
above a few hundred GHz for liquid He and Si interfaces [14].  
In order to account for the phonon scattering at interfaces, the 
diffuse mismatch model (DMM) was suggested in 1987 by 
Swartz and Pohl [13].  The model assumes that all phonons 
incident on the interface from both sides are elastically 
scattered and then are emitted to either side of the interface.  
The probability for a phonon to be emitted to a particular side is 
proportional to the phonon density of states (DOS) of the two 
materials.  Inherent to the DMM is that the transport is 
independent of the interface structure itself and is only 
dependent on the properties of the two materials.  DMM also 
assumes only elastic scattering takes place at the interface; that 
is, for each phonon incident on the interface a single phonon 
with the same frequency will scatter from the interface.  The 
elastic scattering assumption, as opposed to inelastic scattering, 
does not allow phonons to scatter into multiple lower frequency 
phonons or multiple phonons to scatter into higher frequency 
phonons.  In the case of low temperature liquid He to solid 
interfaces the DMM predicts TBR two orders of magnitude 
lower than the one predicted by the AMM, while for solid-solid 
interfaces the differences are small [10]. 

Both mismatch theories can be expressed mathematically 
as [10] 
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where hBD,1 is the thermal boundary conductance from side 1 to 
side 2, g1,j(ω) is the phonon DOS per unit volume of mode j on 
side 1, n(ω,T) is the occupancy distribution function, ħ is 
Planck’s constant, ω is angular frequency, ωmax is the maximum 
phonon frequency on side 1, c1,j is the phonon propagation 
velocity in side 1 for phonons of mode j, α1,j is the transmission 
coefficient incident on the interface from side 1 of mode j, and 
φ is the phonon incidence angle.  The occupancy distribution 
function for phonons is the Bose-Einstein distribution function 
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where kB is the Boltzmann constant. 

The summation in Eq. (2) is taken over all phonon modes, 
which is normally restricted to the acoustic branches.  The 
difference in the AMM and DMM is how the transmission 
coefficient is calculated.  This can be quite involved for the 
AMM where the transmission coefficient is dependent on θ.  
For the DMM case, where complete diffuse scattering is 
assumed, the transmission coefficient is independent of θ and 
can be expressed as [10] 
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A few recent theoretical efforts for high temperature TBR 

modeling have been undertaken to modify the AMM and DMM 
theories [5, 15, 16].  Although there has been some success 
with the DMM and its derivatives, an important inherent 
limitation of DMM is that only elastic phonon scattering at the 
interface is considered.  Recent experimental data indicate that 
the DMM is not sufficient to describe the true nature of room 
temperature processes at interfaces [17, 18].  Alternative 
models have been developed to describe other scattering 
mechanisms, including electron-phonon inelastic scattering at 
the interface [19-21] and electron-phonon scattering in the bulk 
[22].  To date there has been limited experimental data to 
validate the proposed models.  This is primarily due to the 
extreme difficulty in making accurate and reproducible 
measurements, limited ability to change systematically one 
variable at a time, and complications in fully characterizing the 
interface.  In this situation, computational investigation of TBR 
under well-controlled conditions provides an attractive 
complementary approach that may help in interpretation of 
experimental data and design of predictive theoretical models. 

Early computational works used lattice-dynamical 
calculations to determine the transmission coefficients for the 
DMM [23-26] under assumptions of harmonic oscillations and 
elastic scattering.  Molecular dynamic simulations began to be 
used in the late 1990’s as a means of understanding thermal 
boundary conductance in more realistic anharmonic crystal 
models.  One of the earliest MD simulations by Pickett et al. 
[27] was aimed at the investigation of the high thermal 
conductance in chemically vapor deposited diamond films.  In 
1997, Maiti et al. performed MD simulations to gain insight 
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into the TBR across Si grain boundaries [28].  Daly et al. used 
MD to examine thermal conductivity of a superlattice, where 
TBR can be significant [29].  They found that interfacial 
roughness of a few monolayers resulted in a significant increase 
in the TBR of the interfaces.  Schelling et al. utilized MD to 
determine phonon transmission coefficients as a function of 
phonon frequency using the Stillinger-Weber potential [30].  
They demonstrated a good agreement between their model and 
AMM for low frequency phonons, but found large deviations 
for the high-energy phonons that dominate the heat transport at 
room temperature.  Twu and Ho have done some preliminary 
work on the impact of interface disorder on TBR [31].  
Although MD studies of TBR have been limited so far to a few 
simple interfaces, there is tremendous potential to conduct 
systematic simulation experiments to understand better the 
general physics of transport across ideal interfaces as well as 
the role of interface disorder and defects in TBR. 

MD simulations are well suited for studying TBR at 
temperatures well above the Debye temperatures of interface 
materials.  In real materials at temperatures above the Debye 
temperature, θD, the population of the phonon states increases 
linearly with temperature (dn(ω,T)/dT ~ 1 for T>θD).  This is 
the case for MD simulations, where the assumption is that the 
particles behave classically so that the phonon modes too are 
populated linearly with temperature. 

In this work, we perform MD simulations of the energy 
transport across an interface between two crystals with a pair-
wise Lennard-Jones potential used to describe interatomic 
interaction.  Atomic masses, strength of interatomic interaction, 
and the lattice parameter are methodically altered to investigate 
the effect of the phonon spectra and acoustic mismatch at the 
interface on TBR.  Investigation of the energy transfer through 
a perfect interface is followed by examining the effect of 
various defects in the interface region on thermal transport. 

Molecular Dynamics Simulations 
The basic MD approach for determining the thermal 

boundary conductance of an interface is to create an interface 
of two crystal types (type A and type B) and to generate a 
temperature gradient across the interface sample.  This leads to 
a temperature drop at the interface, which can then be used to 
calculate the thermal boundary conductance for a given 
interface using Eq. (1). 

In this work, an interface was created between two FCC 
crystals as shown in Fig. 1.  The interface was oriented on the 
(001) crystallographic plane.  The pair-wise Lennard-Jones (LJ) 
potential was used to describe interatomic interaction in both 
parts of the system.  The total potential energy of a system of N 
atoms is defined as 
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where ULJ is the LJ pair interaction function, Rij is distance 
between atoms i and j, and ε and σ are parameters defining the 
energy and length-scales of the potential function.  Parameters 
for the interaction between atoms of different types were 
defined using the Lorentz-Berthelot rules, BBAAAB εεε =  and 
3 Copyright © #### by ASME                                                        Copyright © 2004 by ASME 



( ) 2BBAAAB σσσ += .  Although LJ potential provides a 
realistic description of only a limited number of real systems 
(inert gases, van der Waals interaction in molecular systems), it 
is often used to model general effects rather than properties of a 
specific material.  In this work, we use LJ potential with 
different sets of parameters to perform a systematic 
investigation of the basic physical processes responsible for 
TBR. 

Most of the data presented in this paper is in reduced units 
in reference to the LJ potential parameters for atoms of type A 
(left side of the interface).  The length, energy, temperature, 
time, frequency, and thermal boundary conductance are defined 
in reduced units as: 

 
σrr =* ,  εEE =* , εTkT B=* , 

( )2* σε mtt ×= , ( ) εσωω 2* m×= , 

B
BDBD k

mhh 2/1

32/1
*

ε
σ

=  (6) 

 
where m, σ, and ε are mass and LJ parameters of atom A.  The 
“*” is not used in the remaining text and reduced units are 
implied unless specified otherwise. 

Each side of the interface was made of 5x5x20 unit cells 
for a total of 2000 atoms and 40 atomic planes of each atom 
type.  Simulations were run on larger structures, but no 
noticeable differences were observed, while simulations for 
smaller structures gave differing results.  Periodic boundary 
conditions were used in all directions.  Periodic conditions used 
in the z-direction (normal to the interface), simulate an infinite 
array of parallel interfaces with heating and cooling zones 
located in the middle of crystallites A and B respectively.  This 
approach allows for an easier control over the total pressure in 
the system as compared to an alternative approach used by Twu 
and Ho, where the system was constrained within two rigid 
walls [31].  

The equations of motion for all atoms in the system were 
integrated using the Nordsieck fifth-order predictor-corrector 
algorithm.  In general, simulations consisted of equilibration of 
the initial structure at some specified temperature, followed by 
introduction of a constant heat flux through the system.  The 
later was achieved by adding equal amounts of thermal energy 
per unit time in the heating zone and removing it from the 
cooling zone.  The heating zone consisted of six atomic planes 

Fig. 1  Computational cell used to simulate thermal
boundary resistance.  Atoms of type A are shown in red and
atoms of type B are shown in blue.  The dark red and dark
blue atoms belong to the heating and cooling zones,
respectively. 
 4  
in the middle of the type A crystal, while the cooling zone 
consisted of six atomic planes in the middle of the type B 
crystal.  Larger heating and cooling zones were simulated, but 
no noticeable difference was observed with the six atomic plane 
simulations.  Heat was added and subtracted from the heating 
and cooling zones respectively by adjusting the velocities of the 
atoms in each zone as follows: 
 

 
2/1

1 





 ±=

E
Qvv oldnew  (7) 

 
where Q is amount of energy added (+) or removed (-) during 
each time step and E is the total kinetic energy of the zone 
being heated or cooled.  Note that Eq. (7) does allow for some 
net change in momentum during a single time step, but the net 
momentum change vanishes because of averaging over several 
time steps. 

After the initiation of heating and cooling, the system was 
allowed to reach steady state conditions.  For most simulations, 
this took approximately 300,000 time steps or less.  The 
simulations were continued for another 200,000 time steps for 
averaging purposes.  The time steps were approximately 4x10-3 
in reduced units.  The overall system pressure was held 
constant throughout the simulations using the Berendsen 
barostate scheme [32].  The energy error over the entire 
simulation period did not exceed 0.1% once the system reached 
steady state, and was significantly less in most cases. 

The temperatures for the 80 atomic planes were determined 
by 

∑
=

=
L

i
ii

B
vm

Nk
T

1

2

3
1

 (8) 

where kB is Boltzmann constant, L is the number of atoms in the 
atomic plane of interest, and mi and vi are the mass and velocity 
of atom i.  A typical temperature distribution observed in the 
steady state regime is shown in Fig. 2.  There is a dramatic 
temperature drop at the interface as is expected. 

The thermal boundary resistance was calculated by first 
performing a linear curve fit to the temperature distribution for 
both parts of the system and then looking at the difference 
between these curve fits at the interface.  The two atomic 
planes on either side of the interface and heating/cooling 
regions were not included in the linear curve fitting.  This 
strategy, similar to the one used by Twu and Ho [31], is 
depicted in Fig. 2.  The data points in the immediate vicinity of 
the interface and the heating/cooling zones were excluded when 
doing the linear fits to eliminate the effect of the 
heating/cooling method on the simulation results.  

Results 
Three series of interfaces were investigated.  The first 

series was performed for an interface separating two materials 
with identical LJ parameters but different atomic masses.  The 
second series examines TBR of lattice mismatched non-
epitaxial interfaces, while the third series explores the impact of 
alloying at the interfaces. 
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Mass mismatch series 
In this series of simulations, the effect of mass mismatch 

between atoms of type A and B on hBD is determined.  
Changing the mass of atoms directly affects the vibrational 
(phonon) spectrum of the crystal, which makes this series ideal 
for the investigation of the effect of phonon frequency 
mismatch on hBD.  Frequencies of atomic vibrations are 
inversely proportional to m1/2, so that the ratio of Debye 
temperatures for any two simulated atom types is equal to 
(mA/mB)1/2.  The ratio of Debye temperatures is a qualitative 
indicator of how well the phonon spectra of the two sides 
overlap.  Figure 3 shows the results of a series of simulations 
for Debye temperature ratios of 0.2, 0.5, and 0.707 versus 
temperature.  The hBD values are normalized to the hBD at T=0.1 
in order to see the trends for all three interfaces on a single plot.  
The values of hBD at T=0.1 for the Debye temperature ratios of 
0.2, 0.5, and 0.707 are 0.031, 0.403, and 1.49 respectively.  Of 
immediate interest is that hBD is not constant and appears to 
increase linearly with temperature in the cases where the Debye 
temperature ratio is 0.2 and 0.5.  An increase of hBD with 
temperature has also been reported by Twu and Ho [31].  These 
results differ from the mismatch models that predict 
temperature-independent TBR above the Debye temperature. 

The inset of Fig. 3 shows hBD versus Debye temperature 
ratio at T= 0.26, the temperature of the interface.  There is more 
than one order of magnitude difference between hBD for the 
samples simulated.  This result is consistent with the DMM, but 
has not been observed experimentally at high temperatures yet. 

To compare the results of MD simulations with DMM, the 
phonon DOS and phonon propagation speeds must be obtained.  
The phonon DOS was determined by Fourier-transforming the 
velocity-velocity autocorrelation function.  The spectra was 
scaled under the harmonic approximation by noting that the 
energy per unit volume of a subsystem can be expressed as 
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where g(ω)n(ω,T) can be expressed as Cg’(ω)T in the MD case 
and where C is the scaling factor, g’(ω) is the unscaled 
spectrum, and N/V is the atom number density.  Phonon DOS 
were calculated at several different temperatures to see that 
g’(ω) was in fact not a function of temperature.  This was the 
case except for very low temperatures.  This technique does not 
separate the phonon spectra into individual modes.  The phonon 
propagation velocity is determined by generating phonon wave 
packets as described by Schelling et al. [30] and adjusting the 
initial velocity in order to obtain a coherent propagating wave 
packet. 

Figure 4 shows the dependence of the DMM transmission 
coefficient on ω calculated using Eq. (4) and the phonon 
spectra and propagation speeds for an interface with a mass 
ratio of 1:4 (Debye temperature ratio of 0.5).  Since the phonon 
spectra were not broken into individual modes, the effective 
phonon propagation velocity was assumed to be 

3
2 tl

eff
cc

c
+

=  (10) 

where the subscript l and t are for the longitudinal and 
transverse modes.  The velocity was assumed to be wavelength 
independent. 
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The dashed line indicates the Debye model transmission 
coefficient for the interface.  The inset in Fig. 4 shows the 
phonon DOS for both simulated FCC structures along with the 
Debye model DOS where the cutoff frequencies were 
determined using the calculated phonon propagation speeds. 

The calculated transmission coefficient and phonon DOS 
are used in Eq. (2) to calculate the DMM hBD for the interfaces 
simulated.  As noted earlier, the DMM hBD is independent of 
temperature.  Figure 5 shows the ratio of the simulated hBD to 
the DMM hBD.  The DMM does not completely capture 
transport across an ideal interface.  The discrepancy between 
the simulated and theoretical values approaches a factor of two 
or more at higher temperatures.  The most likely explanation 
for this discrepancy is that the DMM accounts only for elastic 
scattering, while MD accounts for both elastic and inelastic 
scattering at the interface.  The linear temperature dependence 
indicates a scattering process that is proportional to phonon 
population, since the phonon population increases linearly with 
temperature at high temperatures.  In the classical limit, at 
temperatures above the Debye temperature, it appears that 
inelastic scattering provides the major contribution to the 
energy transport across the interface, surpassing the 
contribution of the elastic scattering.  This conclusion is further 
supported and discussed in more detail in the last section. 

The inset in Fig. 5 shows the ratio of the MD hBD to the 
DMM hBD versus Debye temperature ratio at T≈0.26.  It is 
apparent that for ideal interfaces the DMM tends to 
underpredict hBD, especially at high temperatures.  These results 
are different then observed experimentally on real interfaces by 
Stevens et al. [18] and Stoner and Maris [17].  These results 
also counter the arguments made by Stoner and Maris in 
attempts to explain discrepancies between the measured hBD 
and the ones predicted by DMM for Pd-diamond interfaces 
[17].  They attributed larger than expected values of hBD 
measured for Pd-diamond interfaces to a strong coupling 
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transform on the velocity-velocity autocorrelation function
at T≈0.26.  The inset shows the phonon DOS for both atom
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between atoms of different type at the interface.  By varying the 
LJ energy parameter ε and setting all other parameters equal in 
both parts of the system, results similar to the mass mismatch 
are obtained as shown by circles in the inset in Fig. 5. 

Lattice mismatch series 
To better understand the impact of defects on hBD, an 

interface was created with a lattice mismatch ratio of σA/σB = 
0.8.  Part A of the system had 5×5×20 unit cells and part B had 
4×4×20 unit cells.  Relaxation of the interface at T=0.42 for a 
time of 65 followed by quenching for a time of 45 resulted in a 
formation of a thin disordered layer at the interface, Fig.6.  
Simulations were conducted in a similar fashion as those for the 
mass mismatch series discussed above.  Figure 7 illustrates the 
temperature dependence of hBD for the lattice mismatch 
interface for which the atomic mass and the energy parameter ε 
are identical for both types of atoms.  Similarl to the results 
discussed above, one can see the increase in hBD with 
temperature.  The hBD values in Fig. 7 are divided by the DMM 
hBD calculated from the simulated phonon DOSs and speeds.  
The DMM appears to overpredict the values of hBD for the 
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Fig. 6  A section of a relaxed atomic structure of an 
interface created by combining two crystals with a lattice
mismatch of σA/σB = 0.8. 
6 Copyright © #### by ASME                                                         Copyright © 2004 by ASME 



temperature range simulated in this particular series.  This 
observation is somewhat expected since the phonon speeds and 
the DOSs are nearly identical for the two parts of the system in 
this lattice mismatch series. 

Simulations were also performed for a series where the 
mass mismatch was combined with the lattice mismatch.  The 
first inset of Fig. 7 shows hBD as a function of Debye 
temperature ratio.  The observed dependence is similar to the 
mass mismatch series, except for the case of large Debye 
temperature ratio interface, where hBD plateaus for the lattice 
mismatch series.  This indicates that scattering at the interface 
for similar materials dominates the transport resistance, while 
for dissimilar materials an additional interface scattering 
appears to assist the energy transport.  These results differ from 
those reported by Petterson and Mahan for lattice-dynamics 
simulations that were restricted to elastic scattering and very 
ordered interfaces [24].  Petterson and Mahan modeled 
interfaces that had perfect crystal structures on both sides of the 
interface. 

To illustrate the impact of the disordered layer caused by 
lattice mismatch on the boundary conductance, the results 
obtained for systems with both lattice and mass mismatch are 
divided by the values of hBD’s calculated for the same Debye 
temperature ratios but without the lattice mismatch.  The results 
are shown in the second inset of Fig. 7.  It appears that the 
disordered layer at the interfaces assist in thermal transport for 
interfaces with small Debye temperature ratios, while hindering 
transport for large Debye temperature ratios. 

Interface alloying series 
Another type of interface structure considered was 

generated by randomly mixing atoms in the two atomic layers 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4
Temperature

h B
D

/h
B

D
,D

M
M

0.01

0.10

1.00

10.00

0.0 0.5 1.0
Debye Temp. Ratio

h B
D

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
Debye Temp. Ratio

h B
D

,lm
/h

B
D

,m
m

Fig. 7   Ratio of MD hBD to DMM hBD as a function of
temperature for an interface with a lattice mismatch of
σA/σB = 0.8.  The first inset shows hBD versus Debye
temperature ratio for the lattice mismatch MD simulation
with σA/σB = 0.8 and T≈0.26.  The Debye temperature ratio
is controlled by changing the mass ratio of atoms of type A
and B.  The second inset shows the hBD for the series
illustrated in the first inset divided by the hBD calculated for
the same Debye temperature ratios but without lattice
mismatch (σA/σB = 1). 
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adjacent to the interface, Fig. 8.  Figure 9 shows the results of 
the simulations performed on such “alloyed” interface at 
T≈0.26.  The results are divided by the predictions of DMM 
and the results from the mass mismatch series and plotted 
versus Debye temperature ratio.  In all cases, the alloying 
resulted in a relatively small improvement of the energy 
transport across the interface.  This result is different than that 
obtained by Twu and Ho [31].  Twu and Ho used the Morse 
potential on one side of the interface and ran the simulations at 
T=0.3. 

The impact of individual point defects was also considered 
by removing one atom from the type A side of an ideal 
interface.  There were no noticeable changes in the hBD over the 
range of mass mismatches tested in the first series.  This 
indicates that individual point defects that might be found in 
epitaxially grown films might contribute little to the overall 
thermal boundary resistance. 

Evidence of inelastic scattering 
The temperature dependences of the thermal boundary 

conductance observed in the above series suggest that inelastic 
scattering is likely the dominant mechanism of energy transport 

 
Fig. 8  A section of the alloyed interface produced by 
mixing atoms in the two atomic layers adjacent to the 
interface. 
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across interfaces.  In order to provide a direct verification of 
this hypothesis, we performed a number of MD computer 
experiments aimed at direct observation of the inelastic phonon 
scatting.  In these simulations, performed at the initial zero 
temperature and mass ratio between the atoms of type A and B 
of 0.2, a longitudinal phonon wave packet was introduced into 
one side of the interface in the fashion described by Schelling et 
al. [33].  The frequency of the phonon was set to ω=13.6.  The 
DMM predicts a transmission coefficient of 0.2% at this 
frequency.  The wave packet was initially centered at atomic 
plane 65 and directed towards the interface, which was located 
between atomic planes 119 and 120.  

Figure 10(a) shows the displacement of the atomic planes 
90, 119, 120, and 122.  The phonon wave packet can be seen 
passing through the atomic planes in route to the interface 
between time 0.0 and 0.4.  At about t=0.3 the phonon wave 
packet starts to interact with the interface.  Most of the wave 
packet is reflected as can be seen when the wave packet passes 
through the atomic plane 90 between t=0.6 and 1.0 again.  Part 
of the wave packet scatters inelastically and passes across the 
interface at a much lower frequency as can be seen from the 
slow oscillation of atoms in plane 122 between t=0.4 and 0.7. 

During the initial interaction of the wave packet with the 
interface, the atomic planes on either side of the interface, 
planes 119 and 120, are not quite 180 degrees out of phase.  
Shortly after the wave packet is reflected/transmitted at t=0.7, 
the atomic planes 119 and 120 are exactly 180 degrees out of 
phase indicating a localized vibrational mode.  The energy of 
this vibrational mode continues to decrease over time and 
releases energy to both side of the interface, which can be seen 
in Fig. 10(b).  The localized vibrational mode inelastically 
scatters into lower frequency vibrational modes on the heavy 
side of the interface as can been seen in Fig. 10(b).  This 
analysis clearly indicates two transport mechanisms, acoustic-
acoustic and acoustic-localized-acoustic inelastic phonon 
scattering.  These mechanisms are not accounted for by the 
models based on harmonic interatomic interactions.  These 
additional scattering mechanisms can account for the improved 
overall energy transmission for the alloyed and lattice 
mismatch cases simulated above. 

Although a single wavelength phonon wave packet was 
used in this simple computer experiment, the transmission 
across the interface was over 1.5% for a very low lattice 
perturbation.  Values of over 10% have been reached for large 
amplitude wave packets.  One can easily imagine that when a 
range of frequencies is considered, there can be multiple 
inelastic scattering possibilities, so that potentially a high 
transmission coefficient could be obtained. 

Conclusions 
The molecular-dynamics method was used to investigate 

thermal boundary resistances.  A simple interface was created 
between two FCC materials.  Simulations were conducted to 
determine the hBD relationships to material mismatch and 
temperature.  There was a strong temperature dependence, 
which suggests contribution of inelastic scattering to the energy 
transport through the interface.  Further tests were conducted 
for interfaces with different atomic structures.  In general, the 
disorder/defects were found to assist the energy transport, 
further supporting inelastic scattering as a major contributor to 
 8  
the transport of thermal energy across an interface.  Inelastic 
scattering was directly observed by releasing a wave packet 
near an interface and analyzing the displacements of atomic 
planes.  Two inelastic scattering transport mechanisms were 
observed, one of which involves localized vibrations at the 
interface.  

The simulations presented in this paper point to some of 
the shortfalls of simple harmonic models.  Currently the 
simulations are being expanded to use other potentials 
(embedded atom model and Stillinger-Weber) and add electron 
bulk and interface scattering.  A more extensive range of 
defects is being considered and may explain the overprediction 
of the DMM for Debye-like material interfaces.  Phonon wave 
packet analysis will also continue to be used to try to better 
understand the regimes for which the above two inelastic 
scattering mechanisms are critical. 
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Fig. 10  Displacement of four atomic planes (90, 119, 120, 
122) during the propagation of a longitudinal phonon wave 
packet.  The interface is located between planes 119 and 
120.  Figure (b) shows the localized vibrational mode and its 
loss of energy over time. 
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