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The effect of bending buckling of carbon nanotubes (CNTs) on thermal conductivity of CNT

materials is investigated in atomistic and mesoscopic simulations. Nonequilibrium molecular

dynamics simulations of the thermal conductance through an individual buckling kink in a (10,10)

single-walled CNT reveal a strong dependence (close to inverse proportionality) of the thermal

conductance of the buckling kink on the buckling angle. The value of the buckling kink

conductance divided by the cross-sectional area of the CNT ranges from 40 to 10 GWm�2 K�1 as

the buckling angle changes from 20 to 110�. The predictions of the atomistic simulations are used

for parameterization of a mesoscopic model that enables calculations of thermal conductivity of

films composed of thousands of CNTs arranged into continuous networks of bundles. The results of

mesoscopic simulations demonstrate that the conductivity of CNT films is sensitive to the angular

dependence of the buckling kink conductance and the length of the individual CNTs. For a film

composed of 1 lm-long CNTs, the values of the in-plane film conductivity predicted with a

constant conductance of 20 GWm�2 K�1 and the angular-dependent conductance obtained in

atomistic simulations are about 40 and 20% lower than the conductivity predicted for the same

film with zero thermal resistance of the buckling kinks, respectively. The weaker impact of the

angular-dependent buckling kink conductance on the effective conductivity of the film is explained

by the presence of a large fraction of kinks that have small buckling angles and correspondingly

large values of conductance. The results of the simulations suggest that the finite conductance of

the buckling kinks has a moderate, but non-negligible, effect on thermal conductivity of materials

composed of short CNTs with length up to 1 lm. The contribution of the buckling kink thermal

resistance becomes stronger for materials composed of longer CNTs and/or characterized by higher

density of buckling kinks. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3687943]

I. INTRODUCTION

Individual carbon nanotubes (CNT) have exceptionally

high thermal conductivity, with both theoretical

calculations1–5 and experimental measurements6–9 predicting

values from about 150 to 6600 Wm�1 K�1 at 300 K. Meas-

urements of thermal conductivity of CNT materials, such as

CNT films, mats, buckypaper, and vertically aligned arrays,

however, yield one to three orders of magnitude smaller val-

ues, in the range of 0.1–90 Wm�1 K�1,10–14 which increases

up to �220 Wm�1 K�1 with increasing degree of alignment

of CNTs.10 It is generally accepted that the main factor that

limits the thermal conductivity of CNT materials is the weak

thermal coupling between the individual CNTs, manifesting

itself in small contact conductance of CNT-CNT

interfaces.14–21 The contribution of other factors that may be

responsible for the reduction of the effective conductivity of

CNT materials, such as bending buckling22 and defects of

atomic structure of individual CNTs,1,23 or presence of iso-

tope impurities,4 are much less explored and are not system-

atically quantified. In this paper, we use a combination of

atomistic and mesoscopic computer modeling to investigate

the effect of bending buckling of individual CNTs on ther-

mal conductivity of CNT materials.

In CNT materials, individual CNTs are bound together

by van der Waals forces24 and form continuous networks of

interconnected bundles.25–29 Experimental observations30,31

show that nanotubes in the CNT network structures are sub-

jected to bending buckling. Recent mesoscopic simula-

tions32,33 provide a dynamic illustration of spontaneous

self-organization of individual CNTs into networks of bun-

dles and reveal that the bending buckling plays a major role

in ensuring the structural integrity of the CNT films.33 The

bending buckling of a nanotube results in the formation of a

localized buckling kink,30,34 where the original cylindrical

shape of the nanotube is highly distorted. The distortions

result in modification of mechanical and thermal properties

of the buckled nanotubes around the kinks. In particular,

molecular dynamics (MD) simulations of individual CNTs

predict that the onset of bending buckling results in a transi-

tion from quadratic to linear dependence of the bending

a)Authors to whom correspondence should be addressed. Electronic

addresses: shiomi@photon.t.u-tokyo.ac.jp and lz2n@virginia.edu.
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energy on the bending angle35,36 and in a dramatic increase

in the rate of the dissipation of bending oscillations.37 The

buckling kinks also hamper phonon transport along the

buckled nanotubes and serve as “thermal resistors” for the

heat conduction along the nanotube. A single computational

study22 investigating the thermal conductance of a buckling

kink reports a value of 50 GWm�2 K�1 for the ratio of the

thermal conductance of a kink in a (10,10) CNTs to the

cross-sectional area of the CNT, defined in Ref. 22 as a thin

shell with radius of the CNT and thickness of a single C–C

bond length. One can expect that the conductance of the

buckling kink varies with the degree of buckling, but this

dependence has not been quantified yet.

In order to reveal the angular dependence of the conduct-

ance of the buckling kinks, we perform a series of nonequili-

brium MD simulations where the thermal conductance of

buckling kinks generated in an individual (10,10) single-walled

CNT is evaluated for different bending angles. The results of

the MD simulations are formulated in the form of a functional

dependence of the thermal conductance on the buckling angle

that characterizes the shape of the buckled CNT in the vicinity

of the buckling kink. The predictions of the atomistic simula-

tions are then incorporated into a mesoscopic model32,38 devel-

oped for investigation of the effective (macroscopic) properties

of CNT materials.21 The effect of the thermal resistance of the

buckling kinks on the thermal conductivity of CNT films is

evaluated in mesoscopic simulations performed for films com-

posed of nanotubes of different length, from 100 nm to 1lm.

II. ATOMISTIC SIMULATIONS OF THERMAL
CONDUCTANCE OF BUCKLING KINKS

Classical molecular dynamics (MD) simulations were

carried out by modeling carbon covalent bonds of a CNT by

the Tersoff-Brenner bond-order potential39,40 with the sec-

ond parameter set, which is tuned for interatomic force con-

stants.40 In addition, to describe the van der Waals

interaction between upper and lower walls of the buckled

structure, the Lennard-Jones potential,

Uij ¼ 4e
r
rij

� �12

� r
rij

� �6
" #

fc; (1)

was applied between ith and jth carbon atoms with parame-

ters e¼ 2.4 meV and r¼ 3.37 Å. Here, the cutoff function

was applied to the potential function as

fc ¼ 1 ðd � b=2 � r0
ij � d þ b=2Þ

0 otherwise;

�
(2)

where r0
ij is the equilibrium distance between ith and jth car-

bon atoms when the CNT is straight, d¼ 1.38 nm is the

(10,10) CNT diameter, and b¼ 0.34 nm is the interlayer

spacing in graphite. Thus, the atom pairs of the Lennard-

Jones interaction were determined for the straight CNT and

maintained throughout the bending-buckling simulation.

This way, the Lennard Jones potential serves to express the

van der Waals interaction between upper and lower walls of

the buckled structure without noticeably altering the neigh-

boring interatomic force constants of the graphitic network,

which give reasonable phonon dispersion relations.41

As shown in Fig. 1(a), a buckling deformation was

formed by bending a (10, 10) single-walled CNT with a length

of 50.1 nm (202 unit cells). The CNT was bent by rotating the

two rigid CNT ends (85 unit cells on each side) around the

origin in the opposite directions to a target bending angle H.

Here, the origin is the center of the initial straight CNT. The

CNT was bent by 10�5 degree per time step, where the time

step is 0.5 fs. The flexible part of the CNT in the middle

(8-nm long, 32 unit cells) was relaxed at every time step and

formed a buckling kink when the local curvature exceeded the

critical value. During the bending, the distance between the

end unit cell of the 8-nm-part and the origin was kept constant

with the unit cell plane being orthogonal to the vector con-

necting the origin and the unit cell. This way, we were able to

obtain a system with a local buckling kink held in the middle

by two quasi-straight CNT leads. This configuration is con-

venient for the thermal conductance calculation since the

stress resides dominantly in the buckled part.

FIG. 1. (Color online) A schematic of the simu-

lation process of bending (10, 10) CNT to a

bending angle H¼ 60� (a) and snapshots of

buckled structures at various values of H (b).
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The bending simulations were performed for different

bending angles H. After the bending simulation, as illus-

trated in Fig. 1(a), the buckled CNT was equilibrated at

300 K with only one unit cell at each end fixed. As shown in

Fig. 1(b), the resulting buckled structures were subjected to

local distortions that increased with H. After the equilibra-

tion, the quasi-straight parts of the CNTs deformed slightly

to balance the stress at the buckled structures in the direction

tangential to the fixed unit cells at the ends. Since the follow-

ing mesoscopic simulations required the local angle at the

buckling kink rather than the bending angle, the buckling

angle33 v was defined and calculated as follows.

As illustrated in Fig. 2(a), the local angle W is defined as

the angle between the vectors PLAL and PRAR, where P and A
are the positions of the centers of mass of the pth and (p-1)th

unit cells, respectively. Here, the unit cell index p is counted

from the center of the CNT, and the subscripts L and R denote

left and right sides of the buckled CNT. When p corresponds

to the end unit cells, W becomes identical to H. With decreas-

ing p, W initially increases and subsequently decreases due to

the above-mentioned deformation of the quasi-straight leads.

In the close vicinity of the buckling kink (p approaches 1), W
increases again following the nonaxisymmetric shape of the

unit cells in the buckled part of the CNT. The minimum W
corresponds to the angle between the ends of the buckling

kink. This minimal W is assumed to be equal to mesoscopic

buckling angle v, introduced in Ref. 33. With this definition,

we obtained v¼ 23.6�, 49.5�, 82.1�, and 112.0� for

H¼ 40.0�, 60.0�, 90.0�, and 120.0�, respectively [Fig. 2(c)].

Thermal conductance at the buckling kink was calculated

by nonequilibrium MD simulations. Temperatures of the two

CNT ends were maintained at TC¼ 290 K and TH¼ 310 K by

using the Nose-Hoover thermostat to drive a steady thermal

current Q through the CNT. The length of the temperature-

controlled regions was taken to be Lctrl¼L/2, where

L¼ 50 nm is the thermostat-free part of the CNT. The relaxa-

tion time of the Nose-Hoover thermostat was set to be s¼ 40

ps. These parameters, Lctrl and s, were chosen to minimize the

virtual thermal resistance between the channel and the ther-

mostats.42 The velocity Verlet algorithm was employed to

integrate the classical Newton’s equations of motion with the

time step of 0.5 fs. The steady state thermal current was

obtained by Q¼h(QH�QC)/2 i , where QH and QC are the

thermal currents into the hot and cold thermostat, respectively.

Then the thermal conductance of a buckling kink was calcu-

lated as rb/AT¼Q/(ATDT), where DT is the temperature drop

across the buckled structure. Here, the cross-sectional area AT

of a CNT is defined as an area of a ring with a width equal to

interlayer spacing in graphite, AT¼ pbd.3

Thermal conductance across the buckling kink exhibits

strong dependence on v as shown in Fig. 3. By fitting the de-

pendence with a power law, we obtain

rbðvÞ=AT ¼ 636:9v�0:91: (3)

Hence, the thermal conductance is nearly inversely propor-

tional to v or, in other words, the thermal resistance is pro-

portional to v. The function lies close to the thermal

conductance value reported by Xu and Buehler.22 Here, the

value of Xu and Buehler was rescaled to account for the dif-

ference in the definition of the tube cross section and the

buckling angle was roughly estimated from the snapshot of

the buckled CNT presented in Ref. 22. The obtained angular

dependence of the thermal conductance (or resistance) is

consistent with the work by Nishimura et al.,43 who, through

investigation of diameter dependence, found that the thermal

resistance of the bending-induced buckling kink is propor-

tional to the strain energy in the buckled structure. Note that

the strain energy in the buckled structure is approximately

proportional to the buckling angle,30 thus explaining the ap-

proximate inverse proportionality between the buckling kink

conductance and buckling angle, Eq. (3).

III. MESOSCOPIC SIMULATIONS OF THERMAL
CONDUCTIVITY OF CNT FILMS

The impact of the finite thermal conductance of the

buckling kinks, predicted in the atomistic simulations, on the

effective thermal conductivity of CNT materials is investi-

gated in mesoscopic modeling of thermal conductivity of

FIG. 2. (Color online) An illustration of the defi-

nition of the local angle W (a), the dependence of

W on the unit cell index p counted from the center

of the CNT (b), and the dependence of the buck-

ling angle v on the bending angle H (c). In (a), P
and A are the positions of the centers of mass of

pth and (p-1)th unit cells, respectively. The error

bars show the standard deviation for 50 different

configurations at equilibrium.
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CNT films. The basic principles of the dynamic mesoscopic

model that enables computationally efficient simulations of

self-organization of thousands of CNTs into continuous net-

works of bundles are briefly outlined first, in Sec. III A. The

structure of CNT films is analyzed in Sec. III B and the

method used for the evaluation of the thermal conductivity

of the films is described in Sec. III C. The results of the cal-

culations of thermal conductivity of the CNT films per-

formed with both constant and buckling-angle-dependent

values of the thermal conductance of the buckling kinks are

presented in Sec. III D.

A. Mesoscopic modeling of the formation of CNT
network materials

The mesoscopic model for simulation of CNT-based

materials adopts a coarse-grained representation of individ-

ual CNTs as chains of stretchable cylindrical segments.38

Each CNT i is defined by positions ri;j of nodes j jointing the

neighboring segments and local internal temperatures at the

nodes, Ti;j, as shown in Fig. 4(a). The dynamics of a system

of interacting CNTs is described by solving the equations of

motion of classical mechanics for the positions of all nodes.

The forces acting on the nodes are calculated based on the

mesoscopic force field that includes terms describing internal

stretching, bending, and buckling of nanotubes,33,38 the van

der Waals interactions among the CNTs,32 and the interac-

tions with external bodies.

The bending buckling of a CNT is assumed to occur at

mesoscopic nodes where the local radius of curvature

reaches its critical value of 27.5 nm chosen to be within the

range of values predicted in quasi-static MD simulations of

(10,10) CNTs.33 In the post-buckling state, the bending

energy of a part of the nanotube represented by mesoscopic

segments attached to the node where the buckling occurs is

described by an energy term that is proportional to the buck-

ling angle, vij, Fig. 4(a). The switch from the quadratic de-

pendence on the local curvature to the linear dependence on

the buckling angle represents the effective softening of the

bending potential upon buckling, which is predicted in atom-

istic simulations.35,36 In order to verify the agreement

between the atomistic and mesoscopic models adopted in the

present work, the buckling angle was calculated with the

mesoscopic model applied to an individual buckled nanotube

with the same computational setup used in the atomistic sim-

ulations and described in Section II. For the same bending

conditions, the deviation of the buckling angles vij predicted

by the mesoscopic model from the ones computed in atomis-

tic simulations is found to not exceed 10% for the range of

angles shown in Fig. 3.

The mesoscopic model briefly described above is used

to generate samples of CNT films with continuous network

structures typical for real CNT materials.32,33 The dynamic

mesoscopic simulations are performed for films consisting of

(10,10) single walled CNTs with length LT varying from

100 nm to 1 lm. The films have thickness of 100 nm and ma-

terial density of 0.2 g cm�3, which is a typical density of

CNT films and buckypaper.25 Several simulations are also

performed for films with a smaller thickness of 20 nm and

only a relatively small difference from 100 nm films (below

18%) is found in the values of in-plane thermal conductivity.

The initial samples used in the simulations are generated by

stacking planar layers of randomly oriented and distributed

straight nanotubes with a distance between the layers chosen

to ensure interlayer interaction. The periodic boundary con-

ditions are applied in the directions parallel to the film surfa-

ces. The film density is maintained at a constant value by

two planes enclosing the film from the two sides normal to

the film surfaces and interacting with CNTs by a short-range

repulsive potential. The equilibrium length of segments in

the mesoscopic representation of CNTs is chosen to be 2 nm,

more than an order of magnitude smaller than the critical

FIG. 3. (Color online) The dependence of the thermal conductance of the

bending buckling kink rb=AT on the buckling angle v predicted for (10,10)

CNTs in atomistic simulations. Square symbols show the values found in at-

omistic simulations performed in the present work and the triangle symbol

shows the value recalculated from Ref. 22. Solid curve represents a power

law fit to the data points given by Eq. (3).

FIG. 4. (Color online) Schematic sketch of the mesoscopic representation of

a nanotube i as a chain of cylindrical segments defined by nodes j (a) and the

distribution of temperature along the nanotube in the vicinity of the buckling

kink (b). The solid circles show the mesoscopic nodes, with nodes where

buckling occurs colored red. In the mesoscopic model, the buckling angle vij

is defined as an angle between axes of segments adjacent to the buckling

kink. Buckling kinks and CNT ends divide the nanotubes into several

buckling-free parts. Temperature is assumed to be constant within any

buckling-free part of the nanotube and exhibits a jump at buckling kinks.
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radius of curvature for the onset of bending buckling in

(10,10) CNTs.

Each dynamic simulation consists of a 1 ns long constant

energy part characterized by a rapid spontaneous self-

assembly of CNTs into continuous networks of bundles, fol-

lowed by a longer 9 – 15 ns part performed under conditions

of constant 300 K temperature and characterized by slower

evolution and eventual stabilization of the network struc-

tures.32,33 The films with stable network structures of inter-

connected CNT bundles are produced for nanotubes with

length of 150, 200, 400, and 1000 nm. A system of CNTs

with length of 100 nm, which is below the critical length

needed for the formation of a stable network of bundles at

room temperature,33 is also considered in the simulations.

This system has a cellular structures composed of CNT bun-

dles weakly connected with each other. While all of these

films are used in the analysis of the CNT length dependence

of the thermal conductivity presented in Sec. III D, two of

the samples are selected for a more detailed investigation of

the factors that control the heat conduction in the network

structures. These are the films with LT ¼ 200 nm and dimen-

sions of 500� 500� 100 nm3 (sample A) and LT ¼ 1000 nm

and dimensions 2000� 2000� 100 nm3 (sample B).

B. Structure of CNT films

The continuous random networks of CNT bundles with

partial hexagonal ordering of individual CNTs in the bundles,

generated in the dynamic mesoscopic simulations, are visually

similar to the structures observed in experimental images of

surfaces of CNT films or “buckypaper.”24–29 In particular, the

partial hexagonal ordering of individual CNTs in the bundles

and the presence of multiple interconnections between bun-

dles formed by CNTs that belong to two or more bundles

simultaneously have been identified in experimental images

of CNT films.24–29 The size distributions of the CNT bundles

and other structural characteristics of the network structures

are determined by the length of the nanotubes and the proce-

dure of the sample preparation (the duration of the constant

energy stage of the dynamic simulations, see Sec. III A). In

particular, the average number of CNTs in a bundle cross sec-

tion is equal to 25.7 in sample A and 32.2 in sample B, while

the mean-square deviation of the number of CNTs in a bundle

cross section is close to 25 in both cases.

Both the fraction of buckled nanotubes fb in the simu-

lated samples and the average number of buckling kinks per

buckled nanotube hNbi increase with increasing length of the

CNTs and are fb ¼ 0:37, hNbi¼ 1.9 in sample A and

fb ¼ 0:9, hNbi¼ 5 in sample B, Fig. 5(a). The average num-

ber of buckling kinks per unit length of a CNT, hNbifb=LT ,

has a weak dependence on the CNT length and is equal to

3:7 lm�1 in sample A and 4:5 lm�1 in sample B. The buck-

ling kinks are distributed unevenly along the CNTs, with

pairs or triples of buckling kinks often located close to each

other, Fig. 5(b).

The mesoscopic samples can be described as networks

of endless bundles that split into sub-bundles or individual

CNTs, with the sub-bundles tangling and merging again into

thicker bundles. The buckling kinks are mostly located in

parts of nanotubes that belong to interconnections between

thicker bundles, as can be seen in Fig. 5(b). The interconnec-

tions may consist of individual CNTs, but are more often

(especially for samples composed of longer CNTs) repre-

sented by thinner sub-bundles that connect thicker ones. In

sample A, which is composed of relatively short CNTs, most

nanotubes belong to one or two bundles only and, thus, one

can clearly distinguish nanotubes that serve as interconnec-

tions between bundles. Many of such interconnections are

buckled. In samples with longer CNTs, most of the CNTs

have multiple buckling kinks and simultaneously belong to

several bundles. The buckling kinks in these cases are con-

centrated within thinner bundles that serve as interconnec-

tions between the thicker parts of the continuous network

structure. Moreover, many CNTs that belong to the same

interconnecting bundle tend to have buckling kinks located

in a close proximity from each other.

Thus, in samples composed of sufficiently long nano-

tubes, most of the CNTs have multiple buckling kinks that

tend to concentrate in thinner bundles serving as interconnec-

tions between the thicker bundles. The interconnections can

be expected to play an important role in the heat conduction

through the network structure, suggesting that the effect of

the finite conductance of the buckling kinks may be amplified

by the preferential buckling of the interconnections. On the

other hand, as shown in Ref. 33, the statistical distribution of

the buckling angles v in samples with LT > 120 nm, when

the stable network of bundles is formed, is characterized by a

large number of kinks with small v. In particular, in both

sample A and sample B, v is less than 20� in more than 90%

of the buckling kinks. Due to the strong dependence of rb on

v (see Fig. 3) and broad distributions of the buckling angles

in the network structures, the quantitative effect of bending

buckling on the thermal conductivity of the CNT materials is

difficult to assess without direct numerical simulation of the

heat flow in the mesoscopic samples.

C. Method of calculation of thermal conductivity of
mesoscopic samples

The calculation of in-plane thermal conductivity k of the

CNT films is performed with a method suggested in Ref. 21

and enhanced here with treatment of finite thermal conduct-

ance of the buckling kinks. Briefly, the thermal conductivity

is calculated by applying a temperature gradient to a static

network structure generated in a mesoscopic dynamic simu-

lation, evaluating a steady-state heat flux through the sample,

and finding the thermal conductivity from the Fourier law.

The temperature gradient is created in a mesoscopic sam-

ple by disabling the periodic boundary conditions in the x
direction and cutting the CNTs that cross left-hand and right-

hand sides of the sample, so that the parts of such CNTs are

considered as individual nanotubes in the calculations of ther-

mal conductivity. The mesoscopic nodes in parts of the cut

nanotubes bounded by a cut segment and a buckling kink (or

CNT end if no buckling kinks are present) are assigned con-

stant temperatures Thot and Tcold at the left-hand and right-

hand sides of the sample, respectively (Fig. 6). In rare cases

when the same CNT crosses the left-hand or right-hand sides
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of the sample more than once, the constant temperatures are

also maintained for buckling-free parts of the nanotube

bounded by the two cut segments. The temperatures at all

nodes of all “internal” CNTs are then calculated from the bal-

ance of incoming and outgoing heat fluxes. The analysis is

performed under the assumption that k is defined by the ther-

mal resistance of the inter-tube contacts14,17,21 and buckling

kinks, whereas the intrinsic thermal resistance of individual

non-buckled CNTs is neglected. That is, in a buckling kink

associated with node j of nanotube i, the temperature jumps

from a “left-hand side” value Ti;jðLÞ to a “right-hand side”

value Ti;jðRÞ [Fig. 4(b)] due to the finite thermal resistance of

the buckling kink, whereas in nodes representing buckling-

free parts of the nanotube, Ti;jðLÞ ¼ Ti;jðRÞ ¼ Ti;j. With this

assumption, the temperature of any buckling-free part of a

nanotube, which in bounded by a CNT end and/or buckling

kink(s), is constant and can be calculated from an equation

expressing the balance of all incoming and outgoing heat

fluxes for this part of the CNT. In particular, for a part of

nanotube i bounded by buckling kinks at nodes M and N, this

equation can be written as

Qbði;MÞ � Qbði;NÞ þ
XN�1

j¼M

XNT

k¼1

XNk�1

m¼1

Qcði;jÞ�ðk;mÞ ¼ 0; (4)

where NT is the total number of nanotubes in the sample,

Nk is the number of mesoscopic nodes in nanotube k,

Qbði;jÞ ¼ rbði;jÞðTi;jðLÞ � Ti;jðRÞÞ is the heat flux through

the buckling kink in node j of nanotube i, and Qcði; jÞ�ðk;mÞ
¼ rcði;jÞ�ðk;mÞðTi;jðRÞ � Tk;mðRÞÞ is the contact heat flux

between a pair of mesoscopic segments defined by nodes

j and jþ 1 of nanotube i and nodes m and mþ 1 of nano-

tube k. The thermal conductance of a buckling kink is a

function of the buckling angle, rbði;jÞ ¼ rbðvi;jÞ given by

Eq. (3), and the contact thermal conductance for a pair of

interacting mesoscopic segments, rcði;jÞ�ðk;mÞ, is calculated

as follows:21

rcði;jÞ�ðk;mÞ ¼ rc0

Wði;jÞ�ðk;mÞ
W0

;

Wði;jÞ�ðk;mÞ ¼ n2
r

ð
Sði;jÞ

ð
Sðk;mÞ

wðrÞdSðk;mÞdSði;jÞ;
(5)

where the integration is performed over the surfaces of the

interacting segments, r is the distance between points on

surfaces of different segments, wðrÞ is a “heat transfer” func-

tion21 that vanishes for atomic pairs with r > rc (rc ¼ 10:2 Å

is the cutoff distance of the carbon-carbon interatomic poten-

tial for nonbonded interactions), W0 is a value of Wði;jÞ�ðk;mÞ
for a geometrical arrangement of segments for which the

conductance is known and equal to rc0, and nr is the surface

number density of carbon atoms in the CNT. This method

accounts for a continuous transition between the limiting

FIG. 6. (Color online) Steady-state temperature distribution established in a

mesoscopic sample A and used in the calculation of the thermal conductivity of

the network structure. The sample has dimensions of 500� 500� 100 nm3 and

is composed of 7829 (10,10) CNTs with LT ¼ 200 nm and material density of

0.2 g cm�3. The nanotubes are colored by their temperature. The temperature

distribution is shown for rb ¼ 1, but it is visually indistinguishable from the

one calculated with rb ¼ 0.

FIG. 5. (Color online) Fraction of nanotubes with a given number of buckling kinks, Nb, in samples A (red open squares) and B (green open circles) (a) and a

part of sample A shown in Fig. 6 with positions of buckling kinks marked by dark (red online) color (b). The average number of buckling kinks per buckled nano-

tube, hNbi, and the fraction of buckled nanotubes, fb, are marked in (a) by the solid red square and green circle for samples A and B, respectively.
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cases of parallel and perpendicular CNTs that have been

investigated in MD simulations14–19 and experiments.20 For

(10,10) CNTs, the model given by Eq. (5) is parameterized

by the value rc0 ¼ 5� 10�11 WK�1 found in atomistic

Green’s function calculations for two CNTs crossing each

other at a 90� angle.14

For buckling-free parts of CNTs bounded from one or

both sides by the end(s) of the nanotube (i.e. when nodes M
and/or N coincide with the end(s) of the CNT) the corre-

sponding heat fluxes Qbði;MÞ and/or Qbði;NÞ are set to zero in

Eq. (4). The heat balance equation is not solved for

buckling-free parts of CNTs that are crossing the left-hand

and right-hand sides of the sample; rather, the temperatures

of all segments in these parts are fixed at the corresponding

values of Thot or Tcold.

The heat flux Qx through any cross-section of the sample

that is perpendicular to the x axis can be calculated, e.g., by

evaluating the total contact heat fluxes QxðcoldÞ and QxðhotÞ for

CNTs that are crossing the left-hand and right-hand sides of

the sample:

QxðhotÞ ¼
XNT

i¼1

XNi�1

j¼1

diðhotÞ
XNT

k¼1

XNk�1

m¼1

Qcði;jÞ�ðk;mÞ;

QxðcoldÞ ¼ �
XNT

i¼1

XNi�1

j¼1

diðcoldÞ
XNT

k¼1

XNk�1

m¼1

Qcði;jÞ�ðk;mÞ;

(6)

where diðhotÞ (diðcoldÞ) is equal to unity if CNT i crosses the

left (right)-hand sides of the sample and is equal to zero

otherwise. The heat flux Qx ¼ QxðcoldÞ ¼ QxðhotÞ is deter-

mined by solving a linear system of equations given for

all buckling-free parts of the CNTs by Eq. (4). The equa-

tions are solved for the nodal temperatures iteratively by

the Gauss-Seidel method,44 until the condition 2jQxðcoldÞ
�QxðhotÞj=ðQxðcoldÞ þ QxðhotÞÞ < 10�6 is satisfied.

Once the heat flux Qx and nodal temperatures of all

“internal” nanotubes in the sample are calculated, the tem-

perature gradient in the x direction, rTx, is evaluated for the

central part of the sample, where the distribution of the tem-

perature is linear. The temperature gradient rTx is not equal

to the imposed value ðTcold � ThotÞ=Lx (Lx is the length of the

sample along the x axis) since the presence of CNT segments

maintained at constant temperatures Thot and Tcold results in

a non-linear distribution of the average material temperature

in the vicinities of the constant temperature sides of the sam-

ple. Finally, the in-plane thermal conductivity of the film is

calculated based on the Fourier law, k ¼ �Qx=ðAxrTxÞ,
where Ax is the area of the sample cross section in the direc-

tion perpendicular to the x axis. Since neither rbði;jÞ nor

rcði;jÞ�ðk;mÞ in Eq. (4) depends on temperature, the calculated

values of k do not depends on the choice of Tcold and Thot

used in the calculations. The temperatures of Tcold¼ 300 K

and Thot¼ 600 K are specified in Fig. 6 for visualization pur-

poses only.

D. Thermal conductivity of CNT films

In order to reveal general trends in variation of the

thermal conductivity of CNT films due to the finite thermal

resistance of buckling kinks, the calculations of thermal

conductivity were performed for both constant values of the

conductance, rb=AT ¼ const, that spans the range from 0 to

50 GWm�2 K�1 and variable angular-dependent conduct-

ance, rbðvÞ, defined by Eq. (3). The results of the calcula-

tions are related to the data obtained in Ref. 21 under

conditions of zero thermal resistance of the buckling kinks

(rb ¼ 1).

The effect of the finite values of the thermal conduct-

ance of the buckling kinks on the temperature distribution in

the CNT films is found to be fairly weak in all calculations,

regardless of the assumed value of rb. Although the calcula-

tions based on Eq. (4) assume an abrupt temperature change

at any of the buckling kinks, the actual differences,

Ti;jðLÞ � Ti;jðRÞ, appear to be relatively small even for rb ¼ 0,

which corresponds to buckling kinks acting as perfect ther-

mal insulators. For instance, the temperature distribution cal-

culated for sample A under the assumption of zero thermal

resistance of the buckling kinks (rb ¼ 1) and shown in

Fig. 6 is visually indistinguishable from the one calculated

under the assumption of thermally insulating kinks (rb ¼ 0)

when the temperature scale adopted in Fig. 6 is used.

Despite the relatively weak effect on the temperature of

individual CNTs, the finite thermal conductance of the buck-

ling kinks results in non-negligible changes in the thermal

conductivity of the CNT films. The results of the calculations

performed with constant (angular-independent) values of the

thermal conductance are shown for samples A and B in

Fig. 7. For the range of values of rb considered in this work,

the ratio of thermal conductivity k to the conductivity k0,

predicted for zero thermal resistance of the buckling kinks, is

substantially smaller than unity, particularly in the case of

sample B composed of longer CNTs. The thermal conductiv-

ity k increases with increasing rb, but remains 4%

and 29% below k0 for samples A and B, respectively, at

rb=AT ¼ 50 GWm�2 K�1.

FIG. 7. (Color online) Ratio of thermal conductivity k calculated for different

values of constant conductance of buckling kinks (rb=AT ¼ const.) to the

thermal conductivity k0 calculated with zero thermal resistance of buckling

kinks (rb ¼ 1). The results are shown for samples A (LT ¼ 200 nm; red

squares and solid curve) and B (LT ¼ 1000 nm; green circle and dashed

curve).
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The values of k=k0 obtained with rb ¼ 0 are equal to

0.66 and 0.31 for samples A and B, respectively. These val-

ues represent the lower bound estimates of the conductivity

for an arbitrary rbðvÞ dependence. The decrease of the film

conductivity due to the presence of the insulating buckling

kinks with rb ¼ 0 has the same physical origin as the

decrease in the conductivity with decreasing CNT length. A

quadratic scaling of the thermal conductivity has been

derived analytically for random networks of straight

CNTs in which the thermal transport is controlled by the

inter-tube contact resistance, while a similar superquadratic

dependence (k0 / L2:2
T ) is found for the networks of bundles

considered in the present work under condition of

rb ¼ 1.21 The quadratic scaling, however, cannot be

directly applied for the evaluation of the thermal conductiv-

ity in a film where the average length of CNTs is reduced to

LT=ðhNbifbÞ by the virtual cuts at the buckling kinks with

rb ¼ 0. For example, hNbifb � 4:5 for sample B and, hence,

the expected ratio of the conductivities based on the quad-

ratic scaling law k0 / L2
T would be k=k0 � 0:05. The actual

value of k=k0 calculated with rb ¼ 0 is substantially larger,

k=k0 � 0:31. The reason for this discrepancy is in a highly

uneven distribution of buckling kinks in the CNT films,

with buckling kinks concentrating in bundles serving as

interconnections in the network structures. Moreover, the

scaling laws are derived in Ref. 21 for fixed (rather than av-

erage) length of the CNTs and should be modified for a

given length distribution. It is worth noting that in a case

when every nanotube in the sample B is virtually cut into

two equal parts and the thermal resistance of the buckling

kinks is neglected, the mesosopic simulation predicts

roughly four-fold decrease in k0 in agreement with the

quadratic scaling law.

The preferential buckling of CNTs that belong to thin

bundles serving as interconnections between thicker bundles,

revealed in the structural analysis discussed in Sec. III B,

suggests that the effect of buckling on the thermal conductiv-

ity of the films is largely defined by the role the interconnects

play in the heat conduction through the network structures.

In order to characterize the contribution of different types of

structural elements of the networks to the overall heat

conduction in a CNT film, we calculate the sum of absolute

values of the contact heat fluxes for a given CNT i:

QRðiÞ ¼
XNi�1

j¼1

XNT

k¼1

XNk�1

m¼1

jQcði;jÞ�ðk;mÞj; (7)

which is hereafter is referred to as the “total heat flux sum.”

A large value of QRðiÞ indicates that nanotube i is an impor-

tant channel of the heat conduction through the network and,

therefore, QRðiÞ can be used as a rough measure of the

involvement of individual CNTs into the overall heat con-

duction process in the material.

The visual pictures of the distributions of QRðiÞ in the

network structures, e.g., Fig. 8, are fairly complex, but still

provide opportunities for making a number of important

observations. In the calculations performed with zero ther-

mal resistance of the buckling kinks [Fig. 8(a)], thick bun-

dles, such as a bundle marked by BB, are composed of CNTs

with relatively small QRðiÞ, while much larger values of QRðiÞ
are characteristic for individual CNTs, thin bundles that

serve as interconnections, and thick bundles that split into

many sub-bundles, such as a bundle marked by AA. Turning

the buckled segments of CNTs to thermal insulators by

assuming rb ¼ 0 makes almost no visible impact on the

values of QRðiÞ in thick bundles such as the BB one, but sig-

nificantly reduces QRðiÞ in thin bundles and split bundles

such as the AA one [Fig. 8(b)]. These qualitative observa-

tions highlight the importance of the preferential buckling of

the interconnections between bundles in defining the impact

of the finite conductance of the buckling kinks on the ther-

mal conductivity of the CNT materials.

In order to quantify the special role of the buckled inter-

connections in the overall heat conduction, the values of the

FIG. 8. (Color online) A part of sample A shown in Fig. 6 with nanotubes colored by their total heat flux sum QRðiÞ, Eq. (7), calculated with rb ¼ 1 (a) and

rb ¼ 0 (b). AA and BB mark two characteristic bundles of CNTs. Bundle AA splits into many thinner bundles and includes multiple buckled CNTs. As a result,

the values of QRðiÞ for nanotubes in this bundle are visibly different in panels (a) and (b). Bundle BB mostly consists of nonbuckled CNTs, and the values of

QRðiÞ for nanotubes in this bundle exhibit only small difference between panels (a) and (b).
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total heat flux sum are averaged over nanotubes with the

same number of buckling kinks, Nb, and the dependence of

the average quantities hQRi on Nb are shown for sample B in

Fig. 9. The values of hQRi calculated with rb ¼ 1 increase

with increasing Nb, indicating that CNTs that contain a larger

number of buckling kinks are, on average, more active par-

ticipants of the heat conduction than CNTs with smaller

number of buckling kinks. As discussed in Sec. III B, the

CNTs with large numbers of buckling kinks are also the ones

that buildup the interconnections in the network structures of

the films. It is not surprising, then, that when the buckling

kinks are assumed to be thermally insulating (rb ¼ 0), an op-

posite trend of hQRi decreasing with Nb is observed. In this

case, the maximum hQRi corresponds to buckling-free

CNTs, because all other CNTs are virtually cut and cannot

efficiently participate in the heat conduction. It is remark-

able, though, that the presence of thermally insulating

buckling kinks significantly reduces hQRi even for the

buckling-free CNTs. The dependences of hQRi on Nb in sam-

ple A with much shorter CNTs is qualitatively similar to the

ones shown in Fig. 9.

The results of the calculations of the thermal conductiv-

ity k performed with the variable angular-dependent thermal

conductance, rbðvÞ, predicted in the atomistic simulations

and defined by Eq. (3), are shown in Fig. 10 for samples

composed of CNTs of various length. The deviation of k
from values obtained in calculations where the thermal re-

sistance of the buckling kinks is neglected increases with

increasing length of the CNTs. The deviation, however, is

smaller than the one of values obtained in calculations per-

formed with the highest constant value of the thermal con-

ductance (rb=AT ¼ 50 GWm�2 K�1). In particular, the

thermal conductivity of sample B is only about 21% below

the value calculated with rb ¼ 1. The relatively weak effect

of the thermal resistance of the buckling kinks on k can be

explained by the fact that most of the buckling angles in the

network structures are small33 and the corresponding values

of the conductance predicted with Eq. (3) are high. In partic-

ular, the mean and most probable values of rb=AT evaluated

for sample B from the probability density function shown in

Fig. 11 are on the order of 100 WGm�2 K�1, which, accord-

ing to Eq. (3), corresponds to the conductance at a buckling

angle of about 7.6�. The broad distribution of the values of

the thermal conductance of the buckling kinks highlights the

importance of using a realistic angular dependence of the

conductance in calculations that aim at an accurate quantita-

tive description of the thermal conductivity of CNT

FIG. 9. (Color online) The values of the total heat flux sum QRðiÞ averaged

over individual nanotubes that have the same number of buckling kinks Nb.

The results are calculated for sample B with rb ¼ 1 (red squares) and rb ¼ 0

(green triangles). Data for Nb > 15� 20 exhibit strong scattering due to the

small number of corresponding nanotubes in the sample. The curves show

least-squares quadratic polynomial approximation of data points with Nb � 20.

FIG. 10. (Color online) The results of the calculation of thermal conductivity k performed for mesoscopic samples composed of nanotubes of different length

with constant values of thermal conductance of the buckling kinks (red squares for rb ¼ 0 and green triangles for rb=AT ¼ 50 GWm�2 K�1) and with angular-

dependent thermal conductance rbðvÞ given by Eq. (3) (blue circles). The data in (a) are normalized to the thermal conductivity k0 predicted for zero resistance

of the buckling kinks (rb ¼ 1). In panel (b), the corresponding dimensional values of k and k0 are plotted. The black dashed line in (b) shows the approximate

scaling law k0 / L2:2
T obtained in Ref. 21 for the k0(LT) dependence. The values of k0 shown by diamonds in (b) are slightly different from the ones in Ref. 21

because of a small difference in the methods used in the calculations of the temperature gradient rTx.
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materials. The effect of the buckling kinks increases with

increasing length of the nanotubes. For longer CNTs, how-

ever, the increasing contribution of the intrinsic thermal re-

sistance of the nanotubes, not included in the present

mesoscopic calculations, may overshadow the contribution

of the buckling kinks. Indeed, the reduction of the thermal

conductivity of the films as a result of the inclusion of the fi-

nite intrinsic conductivity of the CNTs is found to be larger

than the reduction due to the buckling kinks [with angular-

dependent conductance of Eq. (3)] for all samples considered

in the mesoscopic calculations even if a relatively large

intrinsic conductivity of 2000 Wm�1 K�1 is assumed in the

calculations.

IV. SUMMARY

The results of non-equilibrium molecular dynamics sim-

ulations of heat conduction in (10,10) single-walled carbon

nanotubes reveal a strong dependence of the thermal con-

ductance of a buckling kink rb on the buckling angle. For a

range of buckling angles from 20� to 110� the values of

rb=AT vary from 40 to 10 GWm�2 K�1 which agree by the

order of magnitude with the value reported in an earlier

study.22 The implications of the finite thermal conductance

of the buckling kinks on the conductivity of CNT-based

materials are investigated in mesoscopic calculations per-

formed for CNT films composed of thousands of CNTs

arranged into continuous networks of bundles. The meso-

scopic calculations are performed for several constant values

of the thermal conductance of the buckling kinks, as well as

for the angular-dependent conductance predicted in the at-

omistic simulations. The results of the calculations suggest

that the buckling kinks make a moderate, but not negligible,

contribution to the thermal conductivity of CNT-based mate-

rials and the account for the angular dependence of the ther-

mal conductance of the buckling kinks is essential for

accurate quantitative evaluation of the thermal conductivity.

The effect of the finite buckling conductance on the thermal

conductivity of the network structures is amplified by the

preferential buckling of thin bundles and individual CNTs

serving as interconnections between thicker bundles in the

network structures. The total heat flux passing through the

CNTs that are parts of the interconnections is, on average,

higher than in other parts of the network structures. Conse-

quently, the high concentration of the buckling kinks in

interconnects results in a stronger impact of the buckling on

the overall thermal conductivity of the films. The effect of

the buckling kinks on the thermal conductivity of the CNT

films increases with increasing length of the nanotubes and

accounts for about 20% reduction of the conductivity of a

film composed of 1 lm long CNTs. The method developed

in this work for the investigation of the effect of buckling

kinks on the heat conduction in CNT materials can be readily

extended to systems with various types of structural imper-

fections that can be described in terms of the effective

“conductance” of the defected CNT regions.
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