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The propensity of carbon nanotubes (CNTs) to self-organize into continuous networks of bundles has

direct implications for thermal transport properties of CNT network materials and defines the

importance of clear understanding of the mechanisms and scaling laws governing the heat transfer

within the primary building blocks of the network structures—close-packed bundles of CNTs. A

comprehensive study of the thermal conductivity of CNT bundles is performed with a combination of

non-equilibrium molecular dynamics (MD) simulations of heat transfer between adjacent CNTs and

the intrinsic conductivity of CNTs in a bundle with a theoretical analysis that reveals the connections

between the structure and thermal transport properties of CNT bundles. The results of MD

simulations of heat transfer in CNT bundles consisting of up to 7 CNTs suggest that, contrary to the

widespread notion of strongly reduced conductivity of CNTs in bundles, van der Waals interactions

between defect-free well-aligned CNTs in a bundle have negligible effect on the intrinsic

conductivity of the CNTs. The simulations of inter-tube heat conduction performed for partially

overlapping parallel CNTs indicate that the conductance through the overlap region is proportional to

the length of the overlap for CNTs and CNT-CNT overlaps longer than several tens of nm. Based on

the predictions of the MD simulations, a mesoscopic-level model is developed and applied for

theoretical analysis and numerical modeling of heat transfer in bundles consisting of CNTs with

infinitely large and finite intrinsic thermal conductivities. The general scaling laws predicting the

quadratic dependence of the bundle conductivity on the length of individual CNTs in the case when

the thermal transport is controlled by the inter-tube conductance and the independence of the CNT

length in another limiting case when the intrinsic conductivity of CNTs plays the dominant role are

derived. An application of the scaling laws to bundles of single-walled (10,10) CNTs reveals that the

transition from inter-tube-conductance-dominated to intrinsic-conductivity-dominated thermal

transport in CNT bundles occurs in a practically important range of CNT length from �20 nm to

�4 lm. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819911]

I. INTRODUCTION

The emergence of novel approaches for thermal man-

agement at micro/nano scales is crucial for further advance-

ment and miniaturization of microelectronic devices. Due to

their high thermal conductivity1–5 and large surface area,

carbon nanotubes (CNTs) are considered as promising struc-

tural elements in the design of heat sinks for cooling of

microprocessors and other microelectronic devices.6

Examples of recent technological developments utilizing the

unique thermal properties of CNTs include the use of verti-

cally aligned arrays of CNTs as thermal interface materials7,8

or micro-fins9,10 to enhance the rate of the heat transfer from

a microelectronic device to the surroundings.

In most CNT-based materials, such as CNT mats, films,

buckypaper, and vertically aligned arrays, the van der Waals

attraction between individual nanotubes results in their

arrangement into bundles that form entangled continuous

networks.11–16 Recently, the structure of continuous

networks of CNT bundles was reproduced in simulations17

performed with a mesoscopic model representing individual

CNTs as chains of stretchable cylindrical segments18 and

accounting for the internal stretching, bending, and buckling

of CNTs,17,18 as well as the van der Waals interactions

among the CNTs.19 As one can see from Fig. 1, the simu-

lated CNT networks have complex hierarchical structure,

with bundles of CNTs serving as primary building blocks. In

accord with experimental observations,11,12,20 the CNTs ex-

hibit partial close-packed hexagonal ordering in the bundles,

Fig. 1(b), defined by the minimization of the potential energy

of inter-tube interactions.

The formation of bundles has important implications for

thermal transport properties of CNT materials. In particular,

calculations of thermal conductivity of the networks of bun-

dles predict the values of conductivity that are substantially,

by about an order of magnitude, higher as compared to the

values predicted for systems of the same density composed

of randomly dispersed individual CNTs.21 This enhancement

is attributed to an efficient heat transfer along the continuous

intertwined bundles that form the frameworks of the network

structures. While a rigorous theoretical analysis of thermal

conductivity of complex network structures characteristic of

CNT materials is a challenging task, a major prerequisite for
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addressing this challenge is a clear understanding of the ther-

mal transport properties of the primary building blocks to the

network structures—close-packed bundles of CNTs. The

understanding of the thermal transport in individual bundles

is also important for applications where CNT bundles are

used as interconnects in microelectronic devices.22,23

The experimental values of conductivity of CNT bundles,

kb, span a discouragingly broad range, from less than

10 Wm�1K�1 (e.g., Refs. 24 and 25) up to more than a thou-

sand of Wm�1K�1 (Ref. 1). The large variability of the experi-

mental values may be attributed to the differences in the

measurement techniques, thickness, packing density, and struc-

tural parameters of the bundles, concentration of intrinsic

defects in the CNTs and inter-CNT crosslinks, as well as inclu-

sions of graphitic fragments, residual solvent, or catalyst nano-

particles. The lowest values of 3–9 Wm�1K�1 are reported for

relatively thick (on the order of 100 lm) “bundles” of multi-

walled CNTs with packing density that is typical for vertically

aligned arrays of CNTs.24,25 Higher thermal conductivity up to

253 Wm�1K�1 is measured by a non-contact two-laser optical

technique for thin (10–12 nm in diameter) bundles consisting

of 4–7 single-walled CNTs.26,27 Similar room-temperature

conductivity of �150 Wm�1K�1 is obtained for a 10 nm bun-

dle of single-walled CNTs by contact measurements performed

on a microfabricated device in Ref. 28, although a very low

value of several Wm�1K�1 is reported in this work for a

thicker bundle of 148 nm in diameter. The conductivity meas-

ured in Ref. 29 for dense bundles consisting of tens to hun-

dreds of well-aligned multi-walled CNTs (diameter of up to

200 nm) is found to drop from about 400 to 150 Wm�1K�1 as

the thickness of the bundle increases. Even stronger thickness

dependence is observed for bundles of multi-walled CNTs in

Ref. 1, where the room-temperature thermal conductivity is

reported to drop from �1200 Wm�1K�1 to �250 Wm�1K�1

as the bundle diameter increases from 80 to 200 nm.

The decrease of the thermal conductivity with increasing

number of CNTs in the bundles1,28,29 and, more generally,

much lower thermal conductivity of bundles as compared to

individual CNTs (experiments performed for suspended

CNTs yield room temperature values that are ranging from

1400 Wm�1K�1 to 3000 Wm�1K�1 for multi-walled

CNTs1,2,4,5 and even higher values for single-walled

CNTs3,4) are commonly attributed to the van der Waals

inter-tube interactions in the bundles and associated

enhanced phonon scattering.27–31 The reduction of the intrin-

sic thermal conductivity of CNTs and other carbon structures

due to the non-bonding interactions in materials that consist

of multiple structural elements was suggested by Berber

et al.32 based on the results of atomistic Green-Kubo calcula-

tions of thermal conductivity. This suggestion, however,

while echoed in a number of works, e.g., Refs. 28–31, 33, is

only a conjecture extrapolated from the computational pre-

diction on the difference between the thermal conductivity

of a graphene monolayer and graphite. An opposite notion of

a weak effect of the interactions of perfect (defect-free)

CNTs in a bundle on thermal conductivity, which can be

substantially enhanced by structural defects, has been put

forward in Ref. 34 based on the kinetic model calculations of

thermal conductivity. Thus, one of the goals of the simula-

tions reported in the present paper is to clarify the question

on the effect of the inter-tube coupling in CNT bundles on

the intrinsic thermal conductivity of the CNTs.

Another important factor that defines the thermal con-

ductivity of a bundle composed of CNTs that are shorter

than the total length of the bundle is the presence of CNT

ends that interrupt the fast heat flow in individual CNTs and

necessitate the much slower heat exchange between the

CNTs. In this case, one can expect the thermal conductivity

of a bundle to be limited by the weak thermal coupling

between the CNTs35–42 rather that the heat conduction within

the individual CNTs. The dependence of the thermal conduc-

tivity of bundles on the intrinsic conductivity of CNTs and

the inter-tube conductance in the overlap regions between

the adjacent CNTs has not been discussed in literature so far.

In this paper, we report the results of a thorough investi-

gation of the thermal conductivity of CNT bundles per-

formed by a combination of a non-equilibrium molecular

dynamics (MD) simulation study of the heat transfer

between adjacent CNTs and the intrinsic conductivity of

CNTs in a bundle with a theoretical analysis leading to the

design of a robust model capable of predicting the thermal

conductivity of a bundle based on the properties of constitu-

ent CNTs and structural parameters of the bundle. The

results of MD simulations, presented in Sec. II, suggest that

(1) contrary to the widespread notion of strongly reduced

conductivity of CNTs in bundles,27–32 the van der Waals

interactions between defect-free well-aligned CNTs in a bun-

dle have negligible effect on the intrinsic conductivity of the

FIG. 1. Fragments of a continuous network of bundles generated in a mesoscopic simulation.17,21 The network has density of 0.2 g cm�3 and is composed of

200 nm long (10,10) CNTs. In the system shown in panel (a), a temperature gradient is applied in the horizontal direction and individual nanotubes are colored

by their temperatures. In panel (b), typical bundle cross sections with a partial hexagonal ordering of CNTs are shown.
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CNTs and (2) for sufficiently long parallel nanotubes the

conductance through the overlap region between the neigh-

boring CNTs is proportional to the length of the overlap.

Based on the predictions of the atomistic simulations, we

then develop a mesoscopic-level model of heat transfer in

CNT bundles (Sec. III) and apply this model for theoretical

and numerical analysis of thermal conductivity of bundles

consisting of CNTs with infinitely large and finite intrinsic

thermal conductivities (Secs. IV and V, respectively).

Because of the general nature of the mesoscopic model, the

results of the analysis are applicable not only to bundles of

CNTs but also to bundles composed of any type of heat con-

ducting nanofibers. The general scaling laws predicting the

quadratic dependence of the bundle conductivity on the

length of individual CNTs in the case when the thermal

transport is controlled by the inter-tube conductance and the

independence of the CNT length in another limiting case

when the intrinsic conductivity of CNTs plays the dominant

role are derived in Secs. IV and V. The application of these

scaling laws to bundles of single-walled (10,10) CNTs in

Sec. VI reveals that the transition from inter-tube-conduct-

ance-dominated to intrinsic-conductivity-dominated thermal

transport in CNT bundles occurs in a practically important

range of CNT length from �20 nm to �4 lm.

II. ATOMISTIC SIMULATIONS OF CNT CONDUCTIVITY
AND INTER-TUBE CONDUCTANCE IN BUNDLES

Two series of non-equilibrium MD simulations are per-

formed in order to reveal the basic mechanisms of heat trans-

fer in bundles of CNTs. In the first series of simulations, the

effect of inter-tube coupling on the intrinsic thermal conduc-

tivity of the CNTs is investigated by comparing conductiv-

ities of a single CNT, a pair of parallel CNTs, and a bundle

composed of 7 hexagonally packed CNTs. In the second se-

ries of simulations, the conductance of an overlap region

between a pair of parallel CNTs is studied as a function of

the overlap length. In both series, the simulations are per-

formed for (10,10) single-walled CNTs using the LAMMPS

package.43 The LAMMPS implementation of the AIREBO

potential44 is used to describe the interatomic interactions.

This implementation adopts the 2nd generation REBO

potential45 for chemically bonded carbon atoms within the

CNTs and describes the van der Waals interactions between

non-bonded carbon atoms by the Lennard-Jones potential

with parameters r¼ 3.40 Å and e¼ 2.84 meV. A cutoff func-

tion that ensures a smooth transition of the Lennard-Jones

potential to zero is applied in a range of interatomic distan-

ces from 2.16r to 3r.44,46

A. Conductivity of a CNT in a bundle

The effect of the inter-tube interactions on the intrinsic

conductivity of a nanotube is investigated in MD simulations

performed for systems of one, two, and seven (10,10) CNTs

that are shown schematically in Fig. 2(a). The individual

CNTs used in the simulations are 160 and 300 nm long and

consist of 26 440 and 49 640 atoms, respectively. The CNTs

are covered by 110-atom caps at the ends with one of the

caps interfacing with the nanotube by a 20-atom ring

constituting a half of the nanotube’s unit cell. Free (vacuum)

boundary conditions are applied in all directions. The config-

urations of CNT pairs and bundles are relaxed by quenching

atomic velocities for 15 ps in order to establish a low-energy

separation between the nanotubes and to prevent oscillations

that would affect inter-tube interactions. All systems are then

gradually heated to 300 K by applying the Langevin thermo-

stat for 30 ps while ensuring that the total linear and angular

FIG. 2. A schematic representation (not to scale) of the three systems used

in the MD simulation study of the effect of inter-tube coupling on the intrin-

sic thermal conductivity of CNTs in bundles (a) and representative tempera-

ture profiles obtained in the simulations performed for (10,10) CNTs of

length LT ¼ 160 nm (b). Heat flux is applied to each CNT individually and

the values of thermal conductivity are obtained from the steady-state tem-

perature profiles. All simulations are performed for capped CNTs with the

cylindrical part of length LT . The temperature profiles in panel (b) are

obtained by averaging over the steady-state parts of the simulations and, for

systems composed of 2 and 7 CNTs, by additional averaging of the profiles

calculated for individual CNTs in the bundles.
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momenta are zero.47 Finally, in order to establish a steady-

state temperature gradient along the CNTs, a constant heat

flux is applied by scaling the velocities of atoms in two

0.5 nm wide heat bath regions located on either end of each

CNT, neglecting the hemispherical caps. The velocity scal-

ing is done so that the same amount of energy, QHB, is added

and removed per unit time in the two heat bath regions of

each CNT. The rates of the energy addition/removal used in

the simulations of 160 nm and 300 nm CNTs are

QHB¼ 1.5 eV ps�1 and QHB¼ 1.3 eV ps�1, respectively.

These rates correspond to heat fluxes of QHB=AT ¼ 1.68

� 1011 Wm�2 and QHB=AT ¼ 1.46� 1011 Wm�2, where AT is

the cross-sectional area of a CNT defined as 2pdTRT ,

RT ¼ 0:67 nm is the nanotube radius found in MD simula-

tions of an isolated CNT equilibrated at 300 K, and

dT ¼ 0:34 nm is the nominal thickness of the CNT wall taken

to be equal to the interlayer spacing in graphite.48–50

The values of thermal conductivity of individual CNTs,

kT , are calculated from the Fourier law, kT ¼ �QHB=
ðATdT=dxÞ, where the temperature gradients, dT=dx, are

determined by linear fits of steady-state temperature profiles

generated in constant heat flux simulations, e.g., Fig. 2(b).

The �20 nm regions of non-linear temperature distributions

in the vicinity of the CNT ends are excluded from the calcu-

lation of dT=dx. The time required for the establishment of

the steady-state temperature profiles was about 0.4 ns for

160 nm CNTs and 0.8 ns for 300 nm CNTs. In the steady

state, the simulations are run for an additional 200 ps to

1200 ps and the instantaneous values of thermal conductivity

are evaluated every 5 fs from instantaneous temperature

gradients. The instantaneous values of thermal conductivity

collected in the steady-state regime are found to obey normal

distributions, confirming the random statistical nature of the

fluctuations of these values during the time span of the data

collection. The average thermal conductivity kT and the sam-

ple standard deviation are then calculated from the instanta-

neous values. For multi-tube configurations, the mean of the

thermal conductivities and the pooled standard deviation are

calculated for all CNTs present in a given configuration.

The temperature profiles shown in Fig. 2(b) for an iso-

lated CNT and CNT bundles are almost identical, suggesting

that the thermal conductivity of individual CNTs is not sig-

nificantly affected by the interactions among the CNTs.

Indeed, the values of kT listed in Table I for each of the three

configurations are within the standard deviations of each

other for a given length of the CNTs, while the increase of

kT with increasing CNT length, LT , is characteristic of the

diffusive-ballistic phonon transport in CNTs that has been

discussed in a number of works.47,48,51–53

The absence of any significant effect of the van der

Waals inter-tube coupling in CNT bundles on the intrinsic

thermal conductivity of individual CNTs is consistent with

relatively small changes of the vibrational spectra of CNTs

due to the inter-tube interactions and negligible contribution

of inter-tube phonon modes to thermal conductivity of bun-

dles.34,54 It also suggests that three-phonon umklapp scattering

involving phonons from neighboring CNTs does not play any

significant role in perfect bundles consisting of defect-free

CNTs. The results of the simulations, however, contradict the

experimental observation of the pronounced decrease of the

thermal conductivity of bundles with increasing bundle thick-

ness1,28,29 that is commonly attributed to the dramatic

enhancement of phonon scattering by the inter-tube

interactions.27–32 An alternative explanation of the bundle

thickness dependence of the thermal conductivity could be the

higher degree of CNT misalignment and increased concentra-

tion of inter-tube defects, crosslinks, and foreign inclusions in

larger bundles, which could result in the increase of both the

phonon scattering and inter-tube contact thermal resistance.

Indeed, SEM images of thick “bundles” that exhibit the lowest

thermal conductivity on the order of several Wm�1K�1 reveal

a loose arrangement of poorly aligned CNTs that resemble pil-

lars cut from vertically aligned arrays of CNTs.24,25

B. Inter-tube conductance in CNT bundles

The dependence of the conductance at the interface

between two partially overlapping parallel CNTs on the

length of the overlap region is investigated in the second se-

ries of atomistic simulations. The computational setup used

in these simulations is shown in Fig. 3(a). Periodic boundary

conditions are used in the axial direction (along the x-axis),

while free boundary conditions are applied in other direc-

tions. The two (10,10) CNTs have the same length of 100 or

200 nm and are covered by hemispherical caps at the ends.

The length of the overlap region, Dx12, is systematically var-

ied in the range of 10 to 95 nm, leading to the corresponding

variation of the size of the computational cell in the x-direc-

tion, Lx ¼ 2LT � 2Dx12. Similar to the simulations discussed

in Sec. II A, the initial systems are relaxed by quenching

atomic velocities for 10 ps and brought to 300 K by applying

the Langevin thermostat for 30 ps. A constant heat flux is

then generated by scaling the velocities of atoms in two

2 nm wide heat bath regions defined in the centers of the two

CNTs, so that the same amount of energy, QHB¼ 0.4 eV ps�1

for 100 nm CNTs and QHB¼ 1 eV ps�1 for 200 nm CNTs, is

added and removed per unit time in the two heat bath

regions, as shown in Fig. 3(a). The thermal energy is con-

ducted from the center of the hot CNT, out to the overlap

regions, across to the cold CNT by inter-tube conductance,

and finally to the heat bath region in the center of the cold

tube.

Steady-state temperature distributions are established in

the simulations by the time of 1.5 to 4.5 ns, depending on the

values of LT and Dx12. The simulations are continued in the

TABLE I. Thermal conductivities of a (10,10) CNT, kT , and the corresponding

standard deviations from the mean values predicted in MD simulations per-

formed for a single CNT, a pair of parallel interacting CNTs, and a bundle of 7

CNTs. The configurations considered in the simulations are schematically repre-

sented in Fig. 2(a) and consist of CNTs with length of LT ¼ 160 and 300 nm.

For a given length of the CNTs, the values of kT are within the standard devia-

tions of each other, suggesting that the effect of the inter-tube coupling on the

intrinsic thermal conductivity of CNTs is statistically insignificant.

LT Single CNT 2-CNT configuration 7-CNT configuration

160 nm 223 6 15 Wm�1K�1 220 6 14 Wm�1K�1 215 6 9 Wm�1K�1

300 nm 241 6 6 Wm�1K�1 241 6 6 Wm�1K�1 238 6 6 Wm�1K�1
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steady-state regime for an additional period of 4 to 7.7 ns in

order to collect data for evaluation of the inter-tube conduct-

ance. A representative temperature profile averaged over a pe-

riod of 6.7 ns in the steady-state regime is shown in Fig. 3(b)

for LT ¼ 200 nm and Dx12 ¼ 40 nm. Given that the heat flux

through each of the two overlap regions is QHB=2, the values

of the effective inter-tube conductance per unit overlap length,

rT , is calculated as rT ¼ QHB=ð2DT12Dx12Þ, where DT12 is

the temperature jump at the CNT-CNT contact defined as the

difference of temperatures averaged over the overlap regions

in each tube. The calculation of the inter-tube conductance is

done by collecting “instantaneous” (averaged over sequential

1 ps windows) values of DT12, calculating the corresponding

instantaneous values of rT , and obtaining the average con-

ductance rT and the sample standard deviation from the data

collected over the steady-state part of the simulation.

To determine the dependence of rT on the length of the

overlap region, the simulations are performed for Dx12 rang-

ing from 10 to 45 nm for LT ¼ 100 nm and from 10 to 95 nm

for LT ¼ 200 nm. The calculated values of rT are shown in

Fig. 4 by solid squares and circles for simulations performed

for 100 and 200 nm CNTs, respectively. The sample standard

deviation is also presented as a measure of uncertainty. All

data points are confined within a relatively narrow range

from 0.057 to 0.065 Wm�1K�1, and are all within one sam-

ple standard deviation of each other, thus suggesting that rT

is independent of the overlap length.

This last conclusion is supported by the comparison of

temperature distributions obtained in MD simulations with

the ones predicted by an analytical solution of one-

dimensional steady-state heat conduction equations for par-

tially overlapping nanotubes, Fig. 3(c). The analytical solu-

tion, given in Appendix A, is obtained under assumption of

constant values of the intrinsic thermal conductivity of the

interacting nanotubes, kT , and inter-tube conductance per

unit length, rT . The inter-tube conductance in the theoretical

model is defined by Eq. (A7), which is the same equation

that is used in the analysis of the results of atomistic simula-

tions. The theoretical temperature profiles obtained with

Dx12, QHB, DT12, and kT taken from the MD simulation are

in very good quantitative agreement with the time-averaged

MD temperature distributions (Fig. 3(c)). Small deviations

of the MD results from the theoretical curve observed for the

right (lower-temperature) CNT can be explained by the tem-

perature dependence of kT (kT increases and, for fixed heat
FIG. 3. Computational setup used in MD simulations of the conductance

through overlap regions between parallel CNTs (a), a representative tempera-

ture distribution in the overlapping nanotubes 1 (red curve) and 2 (blue curve)

obtained in a simulation performed for (10,10) CNTs with length

LT ¼ 200 nm and overlap length Dx12 ¼ 40 nm (b), and a comparison of the

temperature distribution in the vicinity of the overlap region with the predic-

tion of an analytical expression derived in Appendix A (c). In panel (a), block

arrows indicate the directions of the heat flow. The flux across the overlap

regions is created by adding energy at a constant rate QHB in the heat bath

region in the center of nanotube 1 and removing it from the heat bath region

in the center of nanotube 2. Each of the heat bath regions has length of 2 nm.

Periodic boundary conditions are applied in the axial direction. The tempera-

ture drop at the inter-tube contact, DT12, is calculated as the difference of the

average temperatures of the overlapping CNT segments, as schematically

shown in panel (b). In panel (c), the temperature profiles obtained in the MD

simulation are shown by black dots and the prediction of Eq. (A4) is shown

by thick light curves. The temperature profiles shown in (b) and (c) are

obtained by averaging data over 6.7 ns in the steady-state regime.

FIG. 4. Inter-tube conductance per unit length, rT , versus overlap length, Dx12,

obtained in MD simulations of two parallel partially overlapping (10,10) CNTs

of 100 nm (blue squares) and 200 nm (red circles) length. The computational

setup used in the simulations is shown in Fig. 3(a). The error bars show one

sample standard deviation calculated for “instantaneous” values of inter-tube

conductance collected during the steady-state part of the simulation.
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flux, jdT=dxj decreases with decreasing T in the range of

temperatures used in the MD simulations32,55,56) that is not

accounted for in the theoretical model. The good overall

agreement between the theoretical model and the results of

MD simulations provides an additional support to the

assumption of the constant inter-tube conductance per unit

length used in the theoretical model.

The values of the inter-tube conductance obtained in this

work,�0.06 Wm�1K�1, are consistent with the results of similar

MD simulations reported in Ref. 38 for shorter 25 to 75 nm long

(10,10) CNTs, where the conductance of 0.05–0.08 Wm�1K�1

is predicted for overlap lengths ranging from 4 to 9.5 nm. A com-

parable values of 0.03 Wm�1K�1 and 0.048 Wm�1K�1 can be

calculated from the results of MD simulations performed for two

parallel 20 nm long (10,10) CNTs42 and two parallel 4.3 nm long

(10,0) CNTs embedded into a “frozen” matrix,39,57 respectively.

On the other hand, an order of magnitude smaller value of

0:0048 Wm�1K�1 can be drawn58 from the results of MD simu-

lations of non-stationary heat transfer in a bundle of seven (5,5)

CNTs reported in Ref. 37. Similarly small values of rT can also

be calculated from data reported in Ref. 36 for MD simulations

performed for 5 to 40 nm long (10,10) CNTs, where the overlap

length is varied from 2.5 to 10 nm.

More importantly, the values of inter-tube conductance

reported in Ref. 36, when expressed in units of Wm�1K�1,

exhibit a strong dependence on the overlap length, e.g., rT

� 0:0065 Wm�1K�1 for 2.5 nm overlap length, rT � 0:0034

Wm�1K�1 for 5 nm overlap length, and rT � 0:0018

Wm�1K�1 for 10 nm overlap length are predicted in simula-

tions performed for 20 and 40 nm long CNTs. This observa-

tion of a strong overlap length dependence of rT is in sharp

contrast with findings of the present study and can be attrib-

uted to the small values of Dx12 and LT considered in Ref.

36. Indeed, a moderate decrease of rT with increasing Dx12

is also observed in Ref. 38, where the values of

0.08 Wm�1K�1 and 0.05 Wm�1K�1 can be estimated for

(10,10) CNTs from the data shown for 4 and 9.5 nm overlap

lengths, respectively. For longer overlap lengths of 10 to

95 nm considered in the present paper, no statistically signifi-

cant variation of rT can be inferred from the results shown in

Fig. 4.

The fixed boundary conditions at the ends of the interact-

ing CNTs and the short length of the CNTs used in Ref. 36

could be additional factors responsible for both the strong

overlap length dependence of rT and the small values of the

conductance observed in this work. The dependence on the

CNT length is especially pronounced for LT < 10 nm and is

weaker as the length increases from 10 to 40 nm.36 The obser-

vation of the pronounced CNT length dependence for short

CNTs is consistent with the results of an MD simulation study

of the interfacial conductance between a (5,5) CNT and a sur-

rounding octane liquid,59 where an increase in the interfacial

conductance per CNT surface area with increasing nanotube

length is observed up to a length of �3.5 nm and attributed to

the extinction of low-frequency phonons in short CNTs. A

very weak dependence on the CNT length is reported in Ref.

38 for LT ranging from 25 to 75 nm, and no statistically signif-

icant difference between the results shown in Fig. 4 for 100

and 200 nm long CNTs is observed.

Overall, the results of the simulations reported in literature

and obtained in the present study suggest that the conductance

between partially overlapping parallel CNTs is proportional to

the length of the overlap (the conductance per length is con-

stant) for conditions relevant to bundles present in real CNT

materials, when the CNTs and CNT-CNT overlaps are longer

than several tens of nanometers. This conclusion is also con-

sistent with the results of experimental measurements of the

thermal conductance between a single walled CNT and a silica

substrate, which suggest that the net value of the thermal con-

ductance is proportional to the length of the CNT.60

III. MESOSCOPIC MODEL OF THERMAL
CONDUCTIVITY OF BUNDLES OF NANOTUBES

Based on the conclusions of the negligible sensitivity of the

intrinsic conductivity of the CNTs to their surroundings in the

bundles and the direct proportionality of the inter-tube conduct-

ance to the length of the overlap between parallel CNTs,

obtained in the MD simulations described above, a robust

mesoscopic-level model is developed in this section for analysis

of thermal conductivity of CNT bundles. The geometrical model

of a bundle is described first, followed by the description of the

representation of the thermal transport in CNT bundles, and the

dimensional analysis of the average conductivity of bundles.

A. Geometrical model of bundles

Both experimental observations11,12,20 and the results of

mesoscopic dynamic simulations17,19 indicate that individual

nanotubes in CNT network materials self-organize into bundles

with almost perfect hexagonal packing of CNTs in the bundles,

e.g., Fig. 1(b). The analysis reported in the present paper, there-

fore, is limited to idealized straight bundles of finite thickness

with perfect hexagonal ordering of individual CNTs (Fig. 5).

The nanotubes in the bundles are arranged along Ns full shells

of axes surrounding a central axis. The total number of axes in

a bundle, Na, is then defined by Ns as follows:

Na ¼ 1þ 6
XNS

n¼1

n ¼ 1þ 3ð1þ NsÞNs: (1)

The bundle cross-sectional area, Ab, is defined as a sum of areas

of hexagonal Voronoi cells surrounding each axis in the bundle,

i.e., Ab ¼ AaNa, where Aa ¼
ffiffiffi
3
p

h2=2 and h is the distance

between the axes (Fig. 5). Along with such “multi-shell” bun-

dles, an idealized case of a two-axis “bundle,” where individual

CNTs are arranged along two parallel axes, is also considered.

Each CNT in a bundle is represented by a straight circu-

lar cylinder of constant length LT , external radius RT , and

cross-sectional area AT defined in Sec. II A. The ends of

neighboring CNTs located on the same axis are separated by

a constant axial separation D (Fig. 6). For a given set of Ns,

LT , and D, the structure of a bundle is completely defined by

positions dn (0 � dn < LT þ D, n ¼ 1; :::;Na) of the right

ends of CNTs that either intersect the cross section x ¼ 0 (if

0 � dn < LT) or are located on the right-hand side of this

cross section (if LT � dn < LT þ D), see Fig. 6.

Numerical calculations of the heat conduction in bun-

dles are performed for bundles of finite length, Lb. The total
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number of CNTs in a bundle, N, is then defined by Ns,

Lb, LT , and D. The CNTs in a finite bundle are indexed

by index i (i ¼ 1; ::;N), where xið1Þ, xið2Þ, and TiðxÞ denote

the coordinates of the left and right ends of CNT i and

one-dimensional temperature distribution along CNT i,
respectively. The implementation of the model for numerical

calculation of thermal conductivity does not rely on a partic-

ular choice of CNT indexing.

In the theoretical analysis of thermal conductivity of an

infinitely long bundle, an indexing from the left to the right

is also used for CNTs located on each individual axis. In this

case, x
ðnÞ
kð1Þ, x

ðnÞ
kð2Þ, and T

ðnÞ
k ðxÞ denote the coordinates of the left

and right ends and the temperature distribution of the kth

CNT on the nth axis (k ¼ :::;�2;�1; 0; 1; 2; :::). On each

axis n, the CNT with k¼ 1 is chosen so that its right end cor-

responds to x
ðnÞ
1ð2Þ ¼ dn.

B. Thermal transport in bundles

The thermal transport in bundles is governed by the

intrinsic conductivity of individual CNTs and the inter-tube

thermal conductance in the overlap regions. Only steady-

state distributions of temperature in bundles are considered

in this work and, therefore, all physical quantities are

assumed to be independent of time. The heat conduction in

an individual CNT i is described by the Fourier law,

Qi ¼ �kTATdTi=dx, where Qi ¼ QiðxÞ is the heat flux

through the CNT cross section. In accordance with the

results of MD simulations described in Sec. II A, the value of

kT is assumed to be unaffected by the non-bonding interac-

tions with other CNTs in a bundle and is equal to the axial

conductivity of a solitary CNT.

The description of the thermal transport between the

neighboring CNTs in a bundle is based on the results of MD

simulations reported in Sec. II B, where the conductance

through the overlap region between the neighboring CNTs is

found to be proportional to the length of the overlap. Namely,

the contact conductance for a pair of isothermal CNTs i and j
lying on neighboring axes and having an overlap region of

length Dxij (Fig. 6) is equal to rTDxij and the corresponding

contact heat flux is Qij ¼ rTDxijðTj � TiÞ. In further deriva-

tions, we assume that the value of Dxij is defined for any pair

of CNTs so that Dxij is equal to the overlap length for pairs of

CNTs that are in thermal contact with each other and Dxij ¼ 0

for all other pairs of CNTs. The assumption of isothermal

CNTs corresponds to the case of infinitely large intrinsic con-

ductivity of CNTs, which is considered in Sec. IV. For finite

intrinsic thermal conductivity, the CNTs are not isothermal. In

this case, considered in Sec. V, rT is assumed to be independ-

ent of the local temperatures of CNTs and, therefore, the heat

flux QijðxÞ between the parts of two neighboring CNTs i and j
through the part of their overlap region located to the left of

coordinate x can be represented in the form

QijðxÞ ¼ rT

ðx
�1

Hijð~xÞðTjð~xÞ � Tið~xÞÞd~x; (2)

where HijðxÞ is equal to 1 if CNTs i and j are located on

neighboring axes in the bundle and point x belongs to their

overlap region, otherwise HijðxÞ ¼ 0.

It is worth noting that the assumption of constant values

of kT and rT , used in the present study, can be relaxed if

needed for analysis of the effect of the dependence of the heat

transfer parameters on geometrical characteristics of the bun-

dle (e.g., Ns and LT) and/or temperature. In particular, the de-

pendence of kT on Ns, reported in a number of experimental

studies1,28,29 but not observed in the atomistic simulations dis-

cussed in Sec. II A, can be easily accounted for in the model.

The computational model can also be straightforwardly gener-

alized for the case when kT and rT depend on the local CNT

temperature. The analytical equations obtained below for the

bundle conductivity, however, essentially rely on the inde-

pendence of kT and rT on the local CNT temperature.

FIG. 6. Schematic representation of an arrangement of CNTs along two

neighboring parallel axes, n and m, in a CNT bundle. For fixed values of LT

and D, the positions of all CNTs on the axes n and m are completely defined

by the positions of the right ends of the CNT crossing the cross section

x ¼ 0, namely dn and dm. Individual nanotubes are identified either by a sin-

gle index i (or j) or by a pair of subscript k and superscript (n), where n is

the index of an axis and k is the index of a CNT on this axis. The value of

Dxij is equal to the overlap length for any pair of overlapping neighboring

CNTs i and j and is equal to 0 for all other pairs of CNTs.

Shell 2

Shell 1

h

Aa

FIG. 5. Example of a cross section of a bundle considered in the mesoscopic

model and composed of two shells (NS ¼ 2) around a central CNT axis.

Individual CNTs are packed along the hexagonally ordered axes separated

from each other by distance h. The bundle contains Na ¼ 19 axes as given

by Eq. (1). The total number of pairs of nearest neighbor axes in the bundle

is Npair ¼ 42 as given by Eq. (3). The area of the bundle cross section is

assumed to be equal to Ab ¼ NaAa, where Aa is the area of the hexagonal

Voronoi cell around an internal axis.
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Two additional assumptions used in the numerical cal-

culations and theoretical analysis reported in the present pa-

per are the ones that the bundles are longer than individual

CNTs (Lb > LT) and the contact heat transfer between neigh-

boring CNTs lying on the same axis is negligible. Thus, the

non-zero thermal conductivity of a bundle is the result of

contact heat transfer between overlapping CNTs lying on

neighboring axes. Each CNT from an internal shell can inter-

act with CNTs located on six neighboring axes, while a CNT

from the external shell has neighbors lying on four or three

axes. Among all possible random distributions of CNTs in a

bundle, there are distributions that correspond to non-

percolating bundles with zero conductivity. In a non-

percolating bundle, the condition jdn � dmj � D is satisfied

for any pair of the neighboring axes n and m.

In numerical calculations, the temperature gradient

rTx ¼ dT=dx of the averaged temperature TðxÞ along a bun-

dle of finite length Lb is maintained by fixing temperatures

TB1 and TB2 at the left (at x ¼ 0) and right (at x ¼ Lb) ends of

the bundle. In order to characterize the position of CNT i with

respect to the boundaries, a variable vi is introduced, which is

equal to 1 if CNT i intersects the left boundary, equal to 2 if

the CNT intersects the right boundary, and equal to 0 other-

wise. The temperature of CNT i with vi 6¼ 0 at a point where

it intersects the plane x ¼ 0 or x ¼ Lb is assumed to be equal

to the temperature TB1 or TB2, correspondingly. As described

below, rTx 6¼ rTBx ¼ ðTB2 � TB1Þ=Lb and rTx should be

calculated in the course of the calculations based on the tem-

peratures of individual CNTs. In the theoretical consideration

of infinitely long bundles, the temperature gradient rTx is an

imposed parameter of the problem.

The goal of the analysis reported in Secs. IV and V is to

evaluate the ensemble-averaged values of thermal conductiv-

ity for bundles at fixed values of LT , D, and Ns (and Lb for

finite-length bundles considered in numerical calculations),

assuming that parameters dn, characterizing the structure of

an individual bundle, are independent random variables

ranging from 0 to LT þ D.

The ensemble-averaged heat flux through any cross sec-

tion of the bundle that is perpendicular to its axis Ox is

assumed to be described by the Fourier law

hQi ¼ �kbAbrTx, where kb is the averaged axial thermal

conductivity of the bundle and brackets h:::i denote averag-

ing over all possible values of dn. The flux hQi can be repre-

sented as hQi ¼ NpairhQpairi, where hQpairi is the

contribution to the averaged heat flux provided by any pair

of neighboring axes in the bundle and Npair is the total num-

ber of pairs of neighboring axes in the bundle

Npair ¼ 6
XNS

n¼1

ð2þ 3ðn� 1ÞÞ ¼ 3Nsð3Ns þ 1Þ: (3)

In general, hQpairi may depend on the thickness of the bun-

dle, i.e., on Ns or Npair; although in certain cases, this de-

pendence is weak and can be neglected. The thermal

conductivity kb can be represented as follows:

kb ¼ �
Npair

Na

hQpairi
AarTx

: (4)

C. Dimensional analysis of the averaged conductivity
of bundles

In order to define kb based on Eq. (4), one needs to cal-

culate hQpairi for a given set of parameters Ns, LT , D, rT , and

kTAT , and for an imposed temperature gradient rTx. The

value of Aa does not affect the temperature distribution. The

results of numerical calculations are also assumed to be inde-

pendent of Lb if Lb is sufficiently large. Thus, hQpairi depends

on six governing parameters including five dimensional pa-

rameters and Ns.

In order to reduce the number of independent governing

parameters in scaling laws for the conductivity of bundles, one

can introduce reduced variables, which are further denoted by

the bar over the variable as compared to corresponding dimen-

sional variables having no bar. In particular, any dimensionless

length variables, e.g., coordinates x, are introduced based on

the length scale LT , any temperature variables, e.g., CNT tem-

perature Ti, are introduced based on the temperature scale

rTxLT , and the dimensionless thermal conductivity of a bundle

kb is introduced based on the scale k� ¼ rTL2
T=Aa, i.e.,

x ¼ x=LT , Ti ¼ Ti=ðrTxLTÞ, and kb ¼ kb=k�. For the five

dimensional governing parameters and three independent units,

e.g., m, W, and K in SI, Buckingham’s P-theorem, e.g., Ref.

61, allows one to conclude that any dimensionless parameter of

the system then depends only on two independent dimension-

less governing parameters and, additionally, on N
S
. These gov-

erning parameters can be chosen, e.g., in the form of the

reduced axial spacing D ¼ D=LT and the Biot number

Bi ¼ rTL2
T=ðkTATÞ, which characterizes the role of the contact

heat transfer with respect to the intrinsic heat conduction in

individual CNTs. Equation (4) for the averaged thermal con-

ductivity can then be rewritten in reduced units as

kb ¼ �
NpairðNsÞ
NaðNsÞ

hQpairiðNs;Bi;DÞ; (5)

where hQpairi ¼ hQpairi=ðrTL2
TrTxÞ.

In Secs. IV and V, the dependence of kb on Ns, D, and

Bi is established theoretically and verified in numerical cal-

culations. For systems where the conductivity is dominated

by the thermal contact conductance and the intrinsic conduc-

tivity is relatively large, the Biot number is small, and tem-

perature gradients along individual CNTs are small.62 In the

limit of Bi! 0, the temperature gradients along nanotubes

vanish and the CNTs become isothermal. This limiting case

is considered next, in Sec. IV.

IV. BUNDLES OF NANOTUBES WITH INFINITELY
LARGE INTRINSIC CONDUCTIVITY

A. Computational model

In the case of infinitely large intrinsic thermal conduc-

tivity of individual CNTs (Bi ¼ 0), each CNT has a constant

temperature Ti. Consequently, the nanotubes crossing the

boundaries have temperatures equal to either TB1 or TB2. In

the steady state, the temperature of an internal CNT (vi ¼ 0)

can be found by balancing all contact heat fluxes through the

overlap regions between this CNT and all other CNTs, i.e.,
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PN
j¼1 Qij ¼ 0, where Qij ¼ rTDxijðTj � TiÞ. Hence, the tem-

peratures of all CNTs in a finite-length bundle can be found

by solving the following system of linear equations:

XN

j¼1

DxijðTj � TiÞ ¼ 0 if vi ¼ 0 ði:e:; for all internal CNTsÞ ;

(6a)

Ti¼TBvi
ifvi¼ 1;2 ði:e:; for CNTs at the ends of the bundleÞ:

(6b)

The heat flux through the cross section at x ¼ 0 can be calcu-

lated as

QB1 ¼ �rT

XN

i¼1;vi¼1

XN

j¼1

DxijðTj � TiÞ; (7)

and a similar equation can be written for the heat flux QB2

through the cross section at x ¼ Lb. In the steady state, Q
¼ QB1 ¼ QB2 and any bundle cross section can be used for

calculation of Q. Then, hQpairi can be found, e.g., using the

following equation:

hQpairi ¼ �
1

Npair

XN

i¼1;vi¼1

XN

j¼1

DxijðTj � TiÞ
* +

: (8)

The numerical procedure used in the calculations is as fol-

lows. Equations (6) are first solved iteratively by the Gauss-

Seidel method,63 until the condition jQB1 � QB2j
< ð1=2ÞðQB1 þ QB2ÞDQ is satisfied with tolerance DQ ¼ 10�7.

In order to calculate TðxÞ and find rTx, a bundle is divided

into a one-dimensional mesh of cells with size Dx in the

direction of the x-axis. The value of TðxÞ within a cell is cal-

culated by averaging temperatures of all CNTs that are cross-

ing this cell, with contributions to the averaging from CNTs

ending within the cell weighted according to the parts of

their lengths that belong to the cell. The procedure of evalua-

tion of TðxÞ is repeated for a sufficiently large (from 2� 104

to 105) number of bundles with different sets of random val-

ues dn in order to ensure that statistical error of the

ensemble-averaging is within 0.1% of the values evaluated

in the calculations.

An example of an ensemble-averaged temperature pro-

file is shown in Fig. 7 for Ns ¼ 1, D ¼ 0, and Lb=LT ¼ 4. In

all bundles with Lb > 2LT and Bi ¼ 0 (e.g., the solid curve

in Fig. 7), the distribution TðxÞ consists of a central part,

where the distribution is truly linear and the temperature

gradient is constant and somewhat larger than rTBx

¼ ðTB2 � TB1Þ=Lb, and boundary regions where the absolute

value of the temperature gradient decreases in the vicinity of

the boundaries. These boundary regions with non-linear dis-

tributions of TðxÞ have widths of DL ¼ LT and correspond to

the regions where CNTs linked to the boundaries are present.

The boundary regions are excluded from the calculation of

the temperature gradient, i.e., rTx is determined based on

the linear part of TðxÞ in the central region of the bundle,

DL � x � Lb � DL. Although the temperature gradient in the

central part of the bundle becomes practically independent

of Lb=LT for Lb=LT > 3, all results at Bi ¼ 0 are obtained

with Lb=LT ¼ 32 in order to ensure faster convergence of the

ensemble averaging. In the calculations performed with

D > 0, when the formation of non-percolating bundles is

possible, the distributions TðxÞ and values of rTx are deter-

mined by averaging results obtained only for percolating

bundles with Q 6¼ 0. Finally, once rTx is found, the

ensemble-averaged values of hQpairi and kb are calculated

with Eqs. (8) and (5), respectively.

B. Theoretical analysis of thermal conductivity

The theoretical evaluation of the averaged thermal con-

ductivity k0
b for Bi ¼ 0 is based on the assumption that, to

the first approximation, the contribution of the conduction

between CNTs lying on a pair of neighboring axes in a bun-

dle does not depend on the conduction between CNTs lying

on any other pair of axes. In order to calculate hQpairi, one

then needs to consider the temperature distribution in a two-

axis bundle (Fig. 6).

The analysis of bundle conductivity can be limited to

bundles with D < LT , because at D � LT , the two-axis bun-

dle does not conduct heat. The relative positions of CNTs in

the two-axis bundle is characterized by a single parameter

d ¼ d1 � d2 that varies from �ðLT þ DÞ to LT þ D. We first

consider only percolating bundles with jdj > D and then

account for the contribution of non-percolating bundles with

jdj � D. For the sake of convenience, only the case when

d > 0 will be considered, because the opposing case when

d < 0 is completely symmetrical and can be obtained from

the former by changing the indexes of the axes. The

FIG. 7. Distribution of the ensemble-averaged reduced temperature ~T ¼
ðT � TB2Þ=ðTB1 � TB2Þ along the bundle length x=LT , obtained in numerical

calculations at Ns ¼ 1, D ¼ 0, and Lb=LT ¼ 4 for Bi ¼ 0 (solid curve) and

Bi ¼ 100 (dashed-dotted curve). The temperature gradient,

rTx ¼ ðTðLb � DLÞ � TðDLÞÞ=ðLb � 2DLÞ, is calculated based on the cen-

tral part of the temperature profile, DL < x < Lx � DL, as shown in the fig-

ure. At Bi ¼ 0, the value of rTx is different from rTBx ¼ ðTB2 � TB1Þ=Lb

due to the non-linear distribution of temperature in the vicinity of

boundaries.
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temperatures of individual CNTs should then satisfy Eq. (6a)

that, in the case of the two-axis bundle, reduces to

Dx2ðTð2Þk �T
ð1Þ
k ÞþDx1ðTð2Þkþ1�T

ð1Þ
k Þ¼ 0 for CNTs on axis1;

(9a)

Dx1ðTð1Þk�1�T
ð2Þ
k ÞþDx2ðTð1Þk �T

ð2Þ
k Þ¼ 0 for CNTs on axis2;

(9b)

where Dx1 ¼ d� D and Dx2 ¼ LT � D� Dx1 are the corre-

sponding overlaps. The solution of Eqs. (9) has a form

T
ð2Þ
k ¼ T

ð1Þ
k�1 þ ð1� aÞDT; T

ð1Þ
k ¼ T

ð2Þ
k þ aDT; (10)

where a ¼ Dx1=ðLT � DÞ and DT ¼ rTxðLT þ DÞ is the

temperature difference between a pair of neighbor CNTs

lying on the same axis. The solution given by Eq. (10) is not

unique. A unique solution for the temperature distribution

can be obtained by fixing the temperature of a single CNT in

the bundle, e.g., T
ð1Þ
1 ¼ T0, where T0 is the imposed tempera-

ture of nanotube 1 on axis 1.

The heat flux through the bundle can be found with Eq.

(8) that reduces to

hQpairip¼�hDx1ðT
ð2Þ
2 �T

ð1Þ
1 Þi¼�ð1�D

2Þhað1�aÞi

¼�1

6
ð1�D

2Þ; (11)

where the subscript “p” indicates that Eq. (11) accounts for

the contribution of percolating bundles only, and hað1� aÞi
is calculated as hað1� aÞi ¼

Ð 1

0
xð1� xÞdx ¼ 1=6 assuming

that a is distributed with equal probability between 0 and 1

(the case of a < 0 implies d � D and corresponds to a non-

percolating bundle). Since the percolation probability is

equal to

Pp ¼ 1� Pðjdj � DÞ ¼ ð1� D
2Þ=ð1þ DÞ2; (12)

the ensemble-averaged value of the heat flux for all possible

bundles is defined as hQpairi ¼ hQpairipPp ¼ �ð1� DÞ2=6.

By inserting this equation into Eq. (5), the averaged thermal

conductivity of a bundle with Ns shells can be written in the

following form

k
0

b ¼
1

12
f 0ðNsÞgðDÞ; (13)

where the “thickness” function

f 0ðNsÞ ¼
2Npair

Na
¼ 6

3N2
s þ Ns

3N2
s þ 3Ns þ 1

; (14)

and the “density” function

gðDÞ ¼ ½Hð1� DÞ	2 (15)

account for the number of shells in the bundle and the axial

separation within the bundle. The Heaviside step function,

HðxÞ (HðxÞ ¼ x for x > 0 and HðxÞ ¼ 0 otherwise), is used

in Eq. (15) in order to extend Eq. (13) to the case where

D � 1, when any two-axis bundle is non-percolating and

k0
b ¼ 0. The thickness function, f 0ðNsÞ, is equal to the ratio

of the conductivity of a bundle with Ns shells to the conduc-

tivity of the two-axis bundle. In the limit of an infinitely

thick bundle, Ns !1, f 0ðNsÞ ! 6, and Eq. (13) reduces to

k
0

b ¼ gðDÞ=2. Another limiting case, further referred to as a

case of Ns ¼ 0, is a bundle composed of two axes only. The

conductivity of the two-axis bundle is k
0

b ¼ gðDÞ=12, since

Npair ¼ 1, Na ¼ 2, and f 0 ¼ 2Npair=Na ¼ 1 for such bundle.

In order to apply Eq. (13) to the two-axis bundle, the thick-

ness function at Ns ¼ 0 should be defined as f 0ð0Þ ¼ 1.

In the case when D ¼ 0, Eq. (13) predicts that k0
b / L2

T .

The reason for this result is obvious from Eq. (11): The

change in the CNT length results in the proportional changes

of both the averaged overlap between a pair of CNTs, hDx1i,
and the averaged temperature difference, hTð2Þ2 � T

ð1Þ
1 i. As a

result, the heat flux hQpairi is a quadratic function of LT . The

derivation of Eq. (13) shows that an increase in D decreases

the averaged thermal conductivity, because it decreases the

heat flux in percolating bundles and increases the probability

of the formation of non-percolating bundles. In the case

where D � 1, any two-axis bundle is non-percolating, while

percolation is still possible in bundles composed of more

than two axes. For instance, a bundle with Ns ¼ 1 (seven

axes) can have non-zero conductivity at D ¼ 1 (e.g., if dn

¼ nLT=6 and axes are indexed in the order of rotation around

the central axis, which has n¼ 0). Thus, Eq. (13) with the

density function given by Eq. (15) provides a good approxi-

mation of the conductivity at sufficiently small D; whereas

for larger axial separations, the heat transfer between differ-

ent pairs of axes is not independent from each other. The ac-

curacy of Eqs. (13)–(15) is further evaluated below by

comparing the theoretical predictions with solutions of the

numerical model described in Sec. IV A.

C. Comparison of the theoretical model with
numerical results

In order to evaluate the accuracy of the theoretical equa-

tions derived above, a series of numerical calculations of the

bundle conductivity is performed for Bi ¼ 0, 1 � Ns � 8,

and 0 � D � 1. Two-axis bundles (Ns ¼ 0) are also

considered.

At D ¼ 0, the numerical values of conductivity per num-

ber of axis pairs in the bundle, k
0

b=f 0ðNsÞ, are found to be in-

dependent of the number of shells, Ns, and coincide with the

theoretical value 1=12 predicted by Eq. (13) within the com-

putational error (Fig. 8(a)). This result shows that the hy-

pothesis on the statistically independent nature of the heat

conduction in different pairs of neighboring CNTs is valid at

D ¼ 0.

At D > 0, the values of k
0

b=f 0ðNsÞ exhibit substantial

increase with increasing Ns for thin bundles (Fig. 8(a)) but

rapidly saturate and become practically independent of Ns at

Ns � 4. In particular, the thickness function f 0ðNsÞ given by

Eq. (14) is equal to �5.11 at Ns ¼ 4, which is only �15%

below the limiting value of 6 at Ns !1. This rapid satura-

tion is related to the decreasing ratio of the number of CNTs
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on the bundle external shell to the total number of CNTs in

the bundle.

The dependence of k0
b on D, predicted by Eqs. (13)–(15)

(solid curve in Fig. 8(a)), coincides with the numerical

results for Ns ¼ 0. For thick bundles (Ns 
 1), however, the

predictions of the theoretical equations are in fairly good

agreement with numerical results only for small D, in the

range 0 � D � 0:1. At larger D, the results of the numerical

calculations deviate from the predictions of Eqs. (13)–(15),

with the theoretical predictions underestimating the values

obtained in the calculations. This deviation is the result of

“chain” interactions, where the percolation probability Pp

becomes much larger then that given by Eq. (12) for the two-

axis bundle. Indeed, while numerical values of Pp coincide

with the curve obtained with Eq. (12) for NS ¼ 0, the perco-

lation probability remains very close to unity for NS � 4 at

D � 1 (Fig. 8(b)).

It is worth noting, however, that consideration of very

large separations for bundles composed of high-aspect ratio

nanotubes within the present model may be meaningless,

since at D
 RT , the van der Waals attraction between

CNTs in a bundle can bend the nanotubes so that they fill the

gaps and reduce the inter-tube interaction energy. The ideal

geometry of the bundle adopted in the present model will no

longer be valid in this case. In real CNT materials, the ratio

RT=LT is usually smaller than 10�2 and can be as small as

10�3–10�4,64 so that the condition D < 0:1 corresponds to

D < ð10� 103ÞRT . Thus, the theoretical model of the bundle

conductivity with the density function given by Eq. (15) is

valid up to quite large separations when measured in CNT

radii.

In the present model, the inverse axial separation 1=D
plays the role of a density parameter that controls the density

of the material and transition to percolation. It was found in

Ref. 65 for two-dimensional fibrous materials that the factor

describing the effect of correlation between temperatures of

individual fibers on the thermal conductivity of the CNT ma-

terial can be accurately expressed in terms of an exponential

function of the inverse density parameter. Here, we apply the

same idea in order to find a semi-empirical density function

gðDÞ that replaces Eq. (15) for thick bundles with Ns � 4.

Namely, one can represent this function in the form

gðDÞ ¼ expð�lDÞ, where the constant l can be found from

the condition that the last equation and Eq. (15) have the

same derivatives at D ¼ 0. This condition yields l ¼ 2, and

the semi-empirical equation for the density function at large

Ns can be written in the form

gðDÞ ¼ expð�2DÞ: (16)

Using gðDÞ given by Eq. (16) in Eq. (13), we obtain an accu-

rate approximation of k
0

for thick bundles (Ns � 4) in the

range D � 1, e.g., dashed curve in Fig. 8(a).

V. BUNDLES OF NANOTUBES WITH FINITE INTRINSIC
CONDUCTIVITY

A. Computational model

In the case of finite intrinsic conductivity of CNTs

(Bi > 0), the nanotubes are not isothermal and the heat

exchange between the nanotubes is defined by the distribu-

tion of temperatures along the nanotubes that are in contact

with each other. The steady-state temperature distribution in

nanotube i, TiðxÞ, can be found by solving a system of one-

dimensional steady-state heat conduction equations with

source terms that account for the contact heat transfer

ATkT
d2Ti

dx2
¼ �

XN

j¼1;j 6¼i

qijðxÞ; (17)

where qijðxÞ ¼ dQijðxÞ=dx ¼ rTHijðxÞðTjðxÞ � TiðxÞÞ is the

linear density of contact heat flux between CNTs i and j. In

order to obtain a unique solution of Eqs. (17) for all CNTs in

FIG. 8. The dependences of the dimensionless thermal conductivity of a

bundle at Bi ¼ 0 scaled by the thickness function, k
0

b=f 0ðNsÞ (a) and perco-

lation probability Pp (b) on the axial separation, D=LT , calculated for differ-

ent Ns. The symbols represent values obtained numerically and lines show

the theoretical predictions. In panel a, the solid curve for Ns ¼ 0 is obtained

with Eqs. (13)–(15) and the dashed curve is obtained with Eqs. (13), (14),

and (16). In panel b, the solid curve is obtained for Ns ¼ 0 with Eq. (12).
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a bundle, we use the boundary conditions that impose fixed

temperatures of TB1 and TB2 at x ¼ 0 and x ¼ Lb for CNTs

that cross the bundle cross sections at these locations that are

considered as two ends of the bundle, while at any end of a

CNT positioned between 0 and Lb, the heat flux is set to be

equal to zero, i.e.,

Tið0Þ ¼ TBvi
if vi ¼ 1; (18a)

dTi

dx
ðxiðkÞÞ ¼ 0 if 0 < xiðkÞ < Lb; (18b)

TiðLxÞ ¼ TB2 if vi ¼ 2: (18c)

In order to solve Eqs. (17) and (18) numerically, a one-

dimensional mesh is introduced that discretizes the bundle

along the axis Ox into M cells of length Dx ¼ Lb=M with co-

ordinates of the cell boundaries, xm ¼ mDx (m ¼ 0; ::;M,

Fig. 9). The temperature distribution along CNT i can then

be represented by a set of discrete values of temperature Ti;m

at points xm, where m varies from Jið1Þ to Jið2Þ that correspond

to the smallest interval of mesh nodes ðxJið1Þ ; xJið2Þ Þ containing

the whole CNT. This method of “global” discretization of

the bundle allows one to obtain a conservative numerical

scheme that ensures conservation of energy in the system

and results in the following equation for the temperature at

any internal node of the CNT:

Ti;mþ1 � 2Ti;m þ Ti;m�1 ¼ BiDx
XN

j¼1;j 6¼i

Dxij;mðTi;m � Tj;mÞ

if m ¼ Jið1Þ þ 1; ::; Jið2Þ � 1; (19)

where Dxij;m is the dimensionless length of the overlap

between CNTs i and j belonging to the interval

ðxm � Dx=2; xm þ Dx=2Þ. Definition of Dxij;m implies that

Dxij;m ¼ Dxji;m for any i, j, and m. In order to maintain a con-

stant heat flux through any cross section of the bundle, Dxij;m

is set to zero if m corresponds to one of the ends of CNTs i

or j, i.e., Dxij;m ¼ 0 if m ¼ JiðkÞ or m ¼ JjðkÞ, k ¼ 1; 2. The

temperature in the first (m ¼ Jið1Þ) or last (m ¼ Jið2Þ) mesh

nodes of CNT i is assumed to be equal to the corresponding

heat bath temperature in accordance with Eqs. (18a) and

(18c) if the CNT crosses the left or right boundary of

the bundle. If a CNT end is positioned inside the bundle, the

temperature of the corresponding first or last nodes of the

CNT is set to be equal to the temperature of the nearest inter-

nal node of the same CNT in order to implement the zero

flux condition given by Eq. (18b).

When Eq. (19) is solved and distributions of temperature

along CNTs are found, the heat flux Q through the system

can be calculated for the cross section at x ¼ 0 in the form

QB1 ¼ �rT

XN

i¼1;vi¼1

XN

j¼1

XM�1

m¼1

Dxij;mðTj;m � Ti;mÞ; (20)

and a similar equation can be written for the heat flux QB2

through the cross section at x ¼ Lb. Since the numerical

scheme implies precise energy conservation, the condition

QB1 ¼ QB2 is valid for any solution of Eq. (19) and hQpairi
can be found, e.g., in the form

hQpairi ¼ �
1

Npair

XN

i¼1;vi¼1

XN

j¼1

XM�1

m¼1

Dxij;mðTj;m � Ti;mÞ
* +

(21)

that is similar to Eq. (8). The important difference between

Eqs. (8) and (21), however, is that the latter predicts more

complex dependence of hQpairi on LT , which is defined by

dependence of the reduced temperatures in the right-hand

part of Eq. (21) on Bi that varies with LT . The set of Eqs.

(19) is solved iteratively by the Gauss-Seidel method, with

iterations performed until the condition jQB1 � QB2j
< ð1=2ÞðQB1 þ QB2ÞDQ is satisfied. Numerical error intro-

duced due to the “global” discretization of bundles is briefly

discussed in Sec. V C.

B. Theoretical analysis of thermal conductivity

In this section, we perform a theoretical analysis of the

average conductivity of bundles composed of CNTs with fi-

nite intrinsic thermal conductivity, i.e., at Bi > 0. For sim-

plicity, the analysis is limited to the case of D ¼ 0, when the

heat transfer in a bundle with arbitrary Ns can be reduced to

the heat transfer in a two-axis bundle. A simplified approach

aimed at establishing the approximate scaling dependence of

kb on the geometrical and heat transfer parameters of the

bundle is applied first and is followed by a more accurate

solution.

For a two-axis bundle with D ¼ 0, the relative position

of two overlapping CNTs lying on different axes is com-

pletely determined by a single geometrical parameter

d ¼ d2 � d1. Following an approach developed in Ref. 49

for calculation of thermal conductivity of a system of dis-

persed, randomly distributed nanotubes, one can assume that

distribution of temperature, TiðxÞ, along any CNT i is close

to a linear one and can be represented in the form

FIG. 9. Schematic representation of the spatial discretization used in the

numerical calculation of CNT temperatures in the case Bi > 0. The bundle

is discretized into cells of length Dx, with cell boundaries given by coordi-

nates xm. The overlap length between CNTs i and j within cell m, Dxij;m, is

equal to Dx if the cell is fully covered by the overlap region, otherwise

Dxij;m ¼ 0.
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TiðxÞ ¼ T0 þrTxxCi
þ dTi

dx

� �
ðx� xCi

Þ; (22)

where xCi
is the coordinate of the center of CNT i, T0 is the

predefined temperature of the bundle at x ¼ 0, and

hdTi=dxi ¼ hðTiðxið2ÞÞ � Tiðxið1ÞÞÞ=LTi is the ensemble-

averaged gradient of temperature in the CNT averaged over

the length of the CNT. Equation (22) allows one to express

the temperature difference in the right part of Eq. (17) as

TjðxÞ � TiðxÞ ¼ rTx �
dTi

dx

� �� �
DxCij

; (23)

where DxCij ¼ xCj
� xCi

. Then, one can integrate Eq. (17),

e.g., for CNT 1 on axis 1 and find a relation between rTx

and hdTi=dxi. For the sake of simplicity, we assign new

indexes 0, 1, and 2 for three CNTs to be considered, so that

the temperature of CNT 1 on axis 1 is T1 ¼ T
ð1Þ
1 and the tem-

peratures of CNTs 0 and 2 on axis 2 are T0 ¼ T
ð2Þ
1 and

T2 ¼ T
ð2Þ
2 . Then, one can find that

T1ðdÞ � T1ð0Þ
LT

¼ � rT

ATkTLT
F10ðdÞ; (24a)

T1ðLTÞ � T1ðdÞ
LT

¼ rT

ATkTLT
F12ðdÞ; (24b)

where the right-hand parts can be calculated using the tem-

perature difference written in the form of Eq. (23) as

follows:

F10ðdÞ ¼
ðd
0

ð~x
0

ðT0ðx̂Þ � T1ðx̂ÞÞdx̂d~x

¼ � rTx �
dTi

dx

� �� �
ðLT � dÞd2

2
; (25a)

F12ðdÞ ¼
ðLT

d

ðLT

~x

ðT2ðx̂Þ � T1ðx̂ÞÞdx̂d~x

¼ rTx �
dTi

dx

� �� �
ðLT � dÞ2d

2
: (25b)

Then, the ensemble-averaged sum of Eqs. (24) takes the

form

dTi

dx

� �
¼ rT

ATkTLT

ðLT

0

½F12ðdÞ � F10ðdÞ	d
d

LT

¼ Bi

12
rTx �

dTi

dx

� �� �
(26)

or

dTi

dx

� �
¼ Bi=12

1þ Bi=12
rTx: (27)

Since, according to Eq. (23), the temperature difference does

not depend on x, hQpairi can be expressed in a form that is

similar to Eq. (11)

hQpairi ¼ �hðd=LTÞðT 1 � T0Þi

¼ � 1� hdTi=dxi
rTx

� �
hað1� aÞi ¼ � 1=6

1þ Bi=12
:

(28)

By substituting hQpairi given by Eq. (28) in Eq. (5), we

finally find an approximate expression for the bundle

conductivity

kbðappÞ ¼
k0

b

1þ Bi=12
; (29)

where

k0
b ¼

1

12

rTL2
T

Aa
f 0ðNsÞ (30)

is the bundle conductivity at Bi ¼ 0 given by Eq. (13) at

D ¼ 0. In the opposed limit of Bi!1, when the bundle

conductivity is dominated by the intrinsic conductivity of

CNTs, Eq. (29) reduces to

k1b ¼ kT
AT

Aa
f 0ðNsÞ; (31)

where the superscript “1” marks the case of Bi!1. Thus,

Eq. (29) predicts a gradual change in the scaling of the bun-

dle conductivity with the CNT length from k / L2
T at Bi� 1

to the length-independent kb at Bi
 1.

Although the derivation of kb at finite Bi discussed

above is fairly simple and instructive, it has an apparent flaw

related to the fact that the temperature distribution given by

Eq. (22) does not satisfy the zero-flux boundary condition on

the CNT ends given by Eq. (18b). In order to quantify the

applicability of Eq. (29), we compare the predictions of this

approximate solution with the accurate analytical solution

based on the derivation provided in the Appendix B for a

two-axis bundle. As shown in the appendix, the heat flux,

Qpair , for the two-axis system with a given Biot number, Bi,

and relative displacement of CNT ends, d, is given by Eqs.

(B22) and (B23). The corresponding ensemble-averaged

heat flux, hQpairi, can then be found as follows:

hQpairiðBiÞ ¼ 2

ð1
0

ð1
x1

QpairðBi; x2 � x1Þ
rTL2

TrTx
dx2dx1

¼ �2

ð1
0

ð1
x1

AðBi; x2 � x1Þ
Bi

dx2dx1; (32)

and the averaged conductivity can be represented in the form

kb ¼ f 0ðNsÞ
ð1
0

ð1
x1

AðBi; x2 � x1Þ
Bi

dx2dx1: (33)

In the limits Bi! 0 and Bi!1, kb given by Eq. (33)

reduces to k0
b and k1b given by Eqs. (30) and (31), respec-

tively. Thus, Eqs. (29) and (33) predict the same values in
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the limits of small and large Biot numbers. At finite Bi, the

difference between the predictions of Eqs. (29) and (33)

reaches the maximum of �27% at Bi � 30 and decreases for

higher Bi, as shown in Fig. 10.

C. Comparison of the theoretical model with
numerical results

In order to evaluate the accuracy of the theoretical equa-

tions derived above, a series of numerical calculations of the

bundle conductivity is performed for Bi ¼ 10�2 � 103,

0 � NS � 4, 0 � D � 1, and Lb=LT ¼ 4. Equation (19) is

solved iteratively for all nanotubes in a bundle with a toler-

ance of DQ ¼ 10�6. The number of discretization nodes, M,

and the number of random samples, Nsample, used in ensem-

ble averaging of all quantities, including rTx and kb, are

chosen to be M ¼ 401 and Nsample ¼ 100. By varying DQ, M,

and Nsample, it is found that the numerical error in conductiv-

ity with these values of numerical parameters is within 1% at

Bi > 0:1, but may increase up to few percentages at

Bi ¼ 0:01.

Typical distributions of temperature along individual

CNTs obtained from numerical solution of Eqs. (19) for

Bi ¼ 1 and Bi ¼ 100 for a two-axis bundle are shown in Fig.

11 by solid curves. At Bi ¼ 1, the variation of temperature

along a CNT is relatively small. At Bi ¼ 100, the tempera-

ture distribution in an inner part of a CNT is close to linear,

but becomes strongly non-linear around the ends where the

zero-heat flux conditions, Eq. (18b), are imposed. Even at a

large Biot number, e.g., Bi ¼ 100, the temperature distribu-

tion along a CNT remains quite complex and can only be

considered linear as a rough approximation. The theoretical

CNT temperature distributions given by Eqs. (B5)–(B8) and

shown in Fig. 11 by thick dashed curves are in excellent

agreement with the results of the numerical solution of Eq.

(19) for finite-length bundles. Since the temperatures of

CNTs that cross the boundaries at x ¼ 0 and x ¼ Lb are not

constant, the distribution of the averaged temperature, TðxÞ,
at large Bi, e.g., at Bi ¼ 100 (dashed curve in Fig. 7), is close

to the linear one, rTx � rTBx, and the numerical results are

less sensitive to Lb than in the case Bi ¼ 0. This weaker

sensitivity to Lb makes it possible to use shorter bundles in

numerical calculations at Bi 6¼ 0 as compared to the case of

Bi ¼ 0.

Theoretical values of the averaged conductivity calcu-

lated based on Eq. (33) for “dense” two-axis bundles (solid

curve in Fig. 12(a) for D ¼ 0) are in excellent agreement

with numerical data (square symbols in Fig. 12(a)) in the

whole range of the Biot numbers considered in the calcula-

tions. With increasing Bi, the transition from the scaling law

given by Eq. (30) to the scaling law given by Eq. (31) occurs

within the transitional range of Bi from 10�1 to 102–103.

In order to calculate the conductivity of two-axis bun-

dles with D > 0, we multiply values calculated with Eq. (33)

by values of the density function given by Eq. (15), i.e., cal-

culate the conductivity with equation

kb ¼ f 0ðNsÞgðDÞ
ð1
0

ð1
x1

AðBi; x2 � x1Þ
Bi

dx2dx1: (34)

The results obtained with Eq. (34) (solid curve in Fig. 12(a)

for D ¼ 0:4) are in a fairly good agreement with values of

conductivity calculated numerically (triangles in Fig. 12(a)).

Thus, for two-axis bundles, the density function given by Eq.

(15) provides a good semi-empirical modification of Eq. (33)

for the case of D > 0.

For multi-shell bundles, however, large deviations of the

results of numerical calculations from the theoretical predic-

tions of Eq. (33) are observed at large Biot numbers (com-

pare square symbols with dashed curve in Fig. 12(b)). This

FIG. 11. Typical distributions of temperature along individual CNTs in the

central part of a two-axis bundles at Bi ¼ 1 (a) and Bi ¼ 100 (b) at overlap

d=LT ¼ 0:3. Solid curves show distributions found in numerical calculations.

Thick dashed curves are the distributions calculated based on analytical so-

lution given by Eqs. (B5)–(B8). The solid and dashed curves visually coin-

cide with each other.

FIG. 10. Relative difference ðkbðappÞ � kbÞ=kb of thermal conductivities of

bundles kbðappÞ and kb calculated with Eqs. (29) and (33), respectively, plot-

ted as a function of the Biot number Bi.
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deviation can be understood by considering Eq. (27). At

Bi!1, hdTi=dxi ! rTx and the averaged heat flux trans-

ferred through any axis in the bundle is equal to �kTATrTx.

The conductivity of the whole bundle is then equal to

k1b ¼ kT
AT

Aa
; (35)

i.e., becomes independent of Ns unlike the prediction based

on Eq. (31). The values of the bundle conductivity calculated

numerically at large Biot numbers agree perfectly with Eq.

(35), suggesting that the theoretical model has to be modified

for large Bi and multi-shell bundles. In Sec. V D, a semi-

empirical modification of Eq. (33) that makes it applicable to

bundles with arbitrary Bi and Ns is proposed.

D. Semi-empirical correction of the analytical solution
for thermal conductivity at finite Biot number

The discrepancy between the theoretical Eq. (33) and

the results of numerical calculations is related to the failure

of the equation to account for the transition from the regime

of small Bi, when the heat flux through a bundle is defined

by the inter-tube contact conductance and is proportional to

the number of pairs of neighbor axes, to the regime of large

Bi, when the heat flux is defined by the intrinsic conductivity

of CNTs and is proportional to the number of axes. In order

to account for this transition, one can introduce a new thick-

ness function, f ðNs;Bi;DÞ, so that for a bundle with Ns

shells, conductivity is equal to

kb ¼ f ðNs;Bi;DÞgðDÞ
ð1
0

ð1
x1

AðBi; x2 � x1Þ
Bi

dx2dx1: (36)

We consider the thickness function f ðN
S
;Bi;DÞ as a semi-

empirical factor in Eq. (36). The values of this function can

be calculated numerically as f ðNS;Bi;DÞ ¼ kbðNS;Bi;DÞ
=kbð0;Bi;DÞ, where kbðNS;Bi;DÞ is the ensemble-averaged

conductivity of bundles with given Ns, Bi, and D. Assuming

that the primary effect of D on kb is already accounted for by

the density function gðDÞ, the dependence of f ðN
S
;Bi;DÞ on

D can be neglected and, instead of f ðN
S
;Bi;DÞ, a more sim-

ple function, f ðN
S
;BiÞ ¼ f ðN

S
;Bi; 0Þ, can be used in Eq.

(36). Numerical values of f ðNs;BiÞ, shown by symbols in

Fig. 13 for Ns ¼ 1, 2, and 3, exhibit smooth variation

between the limiting values of f 0ðNsÞ at Bi! 0 and 1 at

Bi!1. These numerical values of f ðNS;BiÞ can be

approximated by a semi-empirical fitting equation

f ðNs;BiÞ ¼ 1þ 17

14
þ f 0ðNsÞ

2
� 12

7

� �
expð�0:2

ffiffiffiffiffi
Bi
p
Þ

� �

� 1þ tanh �0:79 log10

Bi

2:7

� �� �	 

: (37)

A good quality of the approximation provided by Eq.

(37) can be seen from Fig. 13, where the maximum discrep-

ancy between numerical values (shown by symbols) and the

predictions of Eq. (37) (shown by curves) does not exceed

5%. The solid curve in Fig. 13 is calculated based on Eq.

(37) in the limit of thick bundles with Ns !1. In the case

of “dense” bundles with D ¼ 0, values of kb calculated based

FIG. 12. The ensemble-averaged thermal conductivity, kb, of two-axis bun-

dles with Ns ¼ 0 (a) and multi-shell bundles with Ns ¼ 4 (b) plotted as a func-

tion of Biot number Bi. Square and triangle symbols represent numerical

values calculated for D ¼ 0 and D ¼ 0:4, respectively. In panel a, the red

curve is obtained with Eq. (33) for D ¼ 0 and the green curve is obtained with

Eq. (34) for D ¼ 0:4, where the density function is given by Eq. (15). In panel

b, the red dashed curve is obtained with Eq. (33) for D ¼ 0, the red and green

solid curves are obtained with Eq. (36), where the density and thickness func-

tions are given by Eqs. (16) and (37), at D ¼ 0 and D ¼ 0:4, respectively.

FIG. 13. Thickness function f ðNs;BiÞ versus Biot number Bi for various Ns.

Symbols represent the values obtained in numerical calculations. Curves are

calculated with Eq. (37).
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on Eqs. (36) and (37) for thick bundles with Ns ¼ 4 practi-

cally coincide with the conductivity found in numerical cal-

culations (red solid curve and square symbols in Fig. 12(b))

in the whole range of Biot numbers considered in the

calculations.

In order to calculate the conductivity of thick bundles

with D ¼ 0:4 based on Eq. (36), we use the density function

given by Eq. (16). One can see from Fig. 12(b) (compare

solid green curve and triangle symbols) that this approxima-

tion provides an accuracy within 10% for Bi < 10; while for

larger Biot numbers, the deviation of the theoretical curve

from the results of numerical calculation is more substantial.

One can expect that a more precise semi-empirical approxi-

mation of bundle conductivity at finite Biot numbers and

large axial separations can be achieved by replacing the fac-

tor of 2 under exponent in Eq. (16) by a decreasing function

of Bi.

VI. THERMAL CONDUCTIVITY OF BUNDLES
COMPOSED OF (10,10) CNTs

In this section, we apply Eqs. (36) and (37) for analysis

of the conductivity of bundles composed of (10,10) CNTs.

The choice of the parameters that define the bundle conduc-

tivity is based on the results of atomistic simulations dis-

cussed in Sec. II. In particular, the value of inter-tube

conductance per unit length, rT ¼ 0:06 Wm�1K�1 is chosen

to match the results shown in Fig. 4.

The choice of the intrinsic thermal conductivity of a

CNT is more ambiguous as the values of the conductivity

obtained in atomistic simulations vary widely (from tens to

thousands of Wm�1K�1 for (10,10) CNTs32,36,37,55,56,66–71)

due to the strong sensitivity of the computational predictions

to the CNT length, type of interatomic potential, and other

characteristics of the simulation setup.72 The length depend-

ence of kT observed in the simulations is particularly pro-

nounced for LT < 200 nm and shows signs of saturation at

LT � 600 nm.48,55,66,67,70,71 Indeed, in our simulations per-

formed with the interatomic potential described in Sec. II, a

relatively small change of kT from �223 Wm�1K�1 to

�241 Wm�1K�1 corresponds to the increase of LT from

160 to 300 nm (see Table I), which signifies the transition to

the diffusive-ballistic regime of phonon transport in

CNTs.47,48,51–53,66,70,71 Further increase of LT up to 630 nm

results in a moderate additional increase of kT up to

�261 Wm�1K�1, while a decrease of LT down to 50 nm

leads to a more pronounced change in the value of kT down

to �154 Wm�1K�1.72 Using a procedure suggested in Ref.

73, the value of kT can be extrapolated to infinite CNT

length, yielding �277 Wm�1K�1.

The interatomic potential is another major factor that

affects the values of kT predicted in atomistic simulations.

By performing simulations with modified AIREBO potential

discussed in Sec. II, Brenner potential (REBO),45 Tersoff

potential,74 and modified Tersoff potential suggested by

Lindsay and Broido,75 we found the values of kT ranging

from �228 Wm�1K�1 to �899 Wm�1K�1,72 with the latter

predicted with the modified Tersoff potential. Given the

uncertainty in the precise value of the intrinsic thermal

conductivity of (10,10) CNTs, we perform the analysis of

bundle conductivity for two values of kT , 250 Wm�1K�1 and

1000 Wm�1K�1. This variation of kT also allows us to dis-

cuss the sensitivity of the CNT length dependence of the

bundle conductivity on the intrinsic conductivity of CNTs.

All the geometrical parameters of (10,10) CNTs used in the

analysis of bundle conductivity are the same as in Sec. II,

i.e., RT ¼ 0:67 nm, dT ¼ 0:34 nm, AT ¼ 2pdTRT , and

h ¼ 2RT þ dT .

The CNT length dependencies of thermal conductivity

predicted by Eqs. (36) and (37) for dense, thick bundles

(D ¼ 0, NS !1) composed of (10,10) CNTs are shown in

Fig. 14 for two values of kT by the solid curves. The dashed

and dashed-dotted curves correspond to the limiting cases of

Bi ¼ 0 and Bi!1. These results demonstrate that the de-

pendence of the bundle conductivity on the CNT length

closely follows the quadratic scaling law only for fairly short

nanotubes, LT < LT�, where LT� � 20 nm at kT ¼ 250

Wm�1K�1 and LT� � 40 nm at kT ¼ 1000 Wm�1K�1. In

both cases, the value of LT� roughly corresponds to Bi ¼ 0:1.

For long CNTs, the conductivity of bundles becomes insensi-

tive to the CNT length at LT > LT��, where LT��
¼ 2 � 103 nm at kT ¼ 250 Wm�1K�1 and LT�� ¼ 4 � 103 nm

at kT ¼ 1000 Wm�1K�1, which roughly corresponds to

Bi ¼ 103. In a broad intermediate range of CNT length,

LT� < LT < LT��, i.e., at 0:1 < Bi < 103, the dependence of

kb on LT exhibits a transient behavior between the two limit-

ing cases.

With the change in kT , the values of LT� and LT�� scale

as LT��; LT� / k
1=2
T . This explains why the range of LT that

corresponds to the gradual transition between the limiting

cases of Bi ¼ 0 and Bi!1 has relatively weak sensitivity

to the value of kT assumed in the calculations. For bundles of

a finite thickness and LT < LT��, the conductivity is smaller

than the conductivity of infinitely thick bundles, but the

FIG. 14. Thermal conductivity kb of bundles of (10,10) CNTs calculated

with Eqs. (36) and (37) as a function of the length of individual nanotubes

LT at D ¼ 0, rT ¼ 0:06 Wm�1K�1, and two values of thermal conductivities

of individual CNTs: kT ¼ 250 Wm�1K�1 (red curves) and kT ¼ 1000

Wm�1K�1 (blue curves). Solid, dashed, and dashed-dotted curves are calcu-

lated for infinitely thick bundles (Ns !1) at finite Bi, Bi ¼ 0, and

Bi!1, respectively. The thin dashed-double-dotted curve is obtained for

thin bundles, Ns ¼ 1 (Na ¼ 7), at finite Bi. The geometrical parameters of

CNTs used in the calculations are listed in the text.
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effect of bundle thickness is limited by a factor of two. This

is apparent from the comparison of solid and dash-double-

dotted red curves in Fig. 14, where the latter is obtained for

bundles composed of seven axis (NS ¼ 1).

Thus, the analysis presented above demonstrates that in a

broad range of CNT lengths from �20 nm to �4 lm, which is

characteristic of many of CNT materials used in current appli-

cation,64 the conductivity of CNT bundles has a complex de-

pendence on the thermal properties and length of individual

CNTs. For bundles composed of long nanotubes, the thermal

conductivity is different from the intrinsic conductivity of

individual CNTs by a factor of AT=Aa � 1:8dT=RT and is

close to the measured conductivity of thin, dense, and well-

aligned bundles.26–28 With decreasing CNT length and, thus,

increasing linear density of “free” CNT ends inside bundles,

the conductivity drops by orders of magnitude. The complex

behavior of the conductivity of CNT bundles in the practically

important range of CNT length underlines the importance of

the theoretical treatment of the transitional regime character-

ized by finite values of Biot number.

VII. SUMMARY

A comprehensive computational and theoretical investi-

gation of the thermal conductivity of CNT bundles is per-

formed to clarify a number of outstanding questions on the

mechanisms of heat transfer in a bundle of CNTs arranged

into close-packed hexagonal structure and to establish the

scaling laws governing the dependence of the bundle con-

ductivity on thermal transport properties of constituent

CNTs and structural characteristics of the bundle. The inves-

tigation involves two series of atomistic MD simulations, as

well as theoretical analysis and numerical modeling per-

formed at the mesoscopic level, i.e., for bundles composed

of a large number of CNTs.

The results of MD simulations of thermal conductivity in

individual CNTs and in bundles consisting of 2 and 7 CNTs

suggest that, contrary to a number of earlier reports, the van

der Waals inter-tube coupling in the bundles does not result in

any statistically significant changes in the intrinsic conductivity

of the CNTs. The simulations of inter-tube heat conduction

performed for partially overlapping parallel CNTs indicate that

the conductance through the overlap region is proportional to

the length of the overlap (the conductance per length is con-

stant) for overlaps that are longer than several tens of nm.

The theoretical analysis and numerical calculations of

heat transfer in bundles consisting of CNTs with infinitely

large and finite intrinsic thermal conductivity are performed

with a mesoscopic model designed based on the results of the

MD simulations. The general scaling laws predicting the

quadratic dependence of the bundle conductivity on the length

of individual CNTs in the case when the thermal transport is

controlled by the inter-tube conductance (small Biot number)

and the independence of the CNT length in another limiting

case when the intrinsic conductivity of CNTs plays the domi-

nant role (large Biot number) are derived. The transition

between the two limiting cases is described by a model that

combines an analytical core with a few semi-empirical correc-

tions accounting for the correlations between the heat transfer

along different neighboring pairs of axes. In particular, a

semi-empirical equation is obtained to describe the gradual

change in the dependence of the bundle conductivity on the

bundle thickness from the conductivity that is proportional to

the number of neighboring pairs of axes in the bundle at small

Biot numbers to the conductivity that is proportional to the

total number of axes in the bundle at large Biot numbers.

An application of the scaling laws to bundles of single-

walled (10,10) CNTs reveals that the transition from inter-tube-

conductance-dominated to intrinsic-conductivity-dominated

thermal transport in CNT bundles occurs in a practically impor-

tant range of CNT length from �20 nm to �4 lm. In this tran-

sitional range, the mesoscopic model predicts a dramatic

decrease in the bundle conductivity with decreasing length of

individual nanotubes and, thus, with increasing linear density

of “free” CNT ends inside bundles. The broad range of CNT

length that corresponds to the transition between the two

regimes of heat transfer indicates that quantitative analysis of

thermal conductivity of CNT bundles cannot rely on simplified

scaling laws obtained for the limiting cases of zero or infinite

Biot numbers, but should utilize the theoretical description

derived in this work for finite values of Biot number.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE HEAT
TRANSFER BETWEEN TWO PARTIALLY
OVERLAPPING PARALLEL NANOTUBES

In this appendix, the heat transfer between two partially

overlapping parallel CNTs (Fig. 3(a)) is considered and an

analytical solution is obtained for temperature distribution in

the CNTs. We assume that the overlap region between nano-

tube 1 and nanotube 2 runs from x ¼ a to x ¼ b ¼ aþ Dx12.

Within the overlap region, the steady-state temperature dis-

tributions along the two CNTs, T1ðxÞ and T2ðxÞ, should sat-

isfy the following equations:

kTAT
d2T1

dx2
¼ rTðT1 � T2Þ; kTAT

d2T2

dx2
¼ rTðT2 � T1Þ;

a � x � b (A1)

where kT is the constant intrinsic conductivity of nanotubes,

rT is the constant contact conductance per unit overlap length,

and AT is the nanotube cross-sectional area (see Sec. II A).

Outside the overlap, the temperature distributions are linear

T1ðxÞ ¼ T1ðaÞ þ
dT1

dx

����
x�a

ðx� aÞ; x � a; (A2a)
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T2ðxÞ ¼ T2ðbÞ þ
dT2

dx

����
x�b

ðx� bÞ; x � b; (A2b)

where dT1=dxjx�a ¼ dT2=dxjx�b ¼ �Q=ðkTATÞ is the tem-

perature gradient along the nanotubes outside the overlap

region and Q is the heat flux through the system

(Q ¼ QHB=2 in Fig. 3).

The general solution of Eqs. (A1) with boundary

conditions

dT1

dx

����
x¼b

¼ 0;
dT2

dx

����
x¼a

¼ 0 (A3)

takes the following form:

T1ðxÞ ¼
1

2

�
Dx þE� ½C1 expð

ffiffiffiffiffiffiffi
2Bi
p

xÞ þC2 expð�
ffiffiffiffiffiffiffi
2Bi
p

xÞ	

;

(A4a)

T2ðxÞ ¼
1

2

�
Dx þEþ ½C1 expð

ffiffiffiffiffiffiffi
2Bi
p

xÞ þC2 expð�
ffiffiffiffiffiffiffi
2Bi
p

xÞ	

;

(A4b)

where x ¼ x=LT and Bi ¼ rTL2
T=ðkTATÞ. The constants C1,

C2, D, and E can be defined in terms of the average tempera-

ture, T12, and the average temperature difference, DT12, in

the overlap region,

T12 ¼
1

Dx12

ðb
a

1

2
ðT2ðxÞ þ T1ðxÞÞdx;

DT12 ¼
1

Dx12

ðb
a

ðT2ðxÞ � T1ðxÞÞdx;

(A5)

and the parameters that can be directly drawn from the MD

simulations. Then,

C1 ¼ �DT12Dx12

ffiffiffiffiffiffiffi
2Bi
p expð�

ffiffiffiffiffiffiffi
2Bi
p

aÞ þ expð�
ffiffiffiffiffiffiffi
2Bi
p

bÞ
4sinhð

ffiffiffiffiffiffiffi
2Bi
p

Dx12Þ
;

(A6a)

C2 ¼ �DT12Dx12

ffiffiffiffiffiffiffi
2Bi
p expð

ffiffiffiffiffiffiffi
2Bi
p

aÞ þ expð
ffiffiffiffiffiffiffi
2Bi
p

bÞ
4sinhð

ffiffiffiffiffiffiffi
2Bi
p

Dx12Þ
;

(A6b)

D ¼ �DT12Dx12Bi; (A6c)

E ¼ 2T12 �
Dða þ bÞ

2
; (A6d)

where Dx12 ¼ Dx12=LT , a ¼ a=LT , and b ¼ b=LT . With the

assumption of a constant inter-tube conductance per unit

overlap length (this assumption is supported by the results of

MD simulations presented in Sec. II B), the heat flux through

the system can be calculated as

Q ¼ rT

ðb
a

ðT2ðxÞ � T1ðxÞÞdx ¼ rTDx12DT12: (A7)

Thus, in the model based on Eqs. (A1), the conductance

averaged over the whole overlap area r12 ¼ Q=ðDx12DT12Þ
is equal to the “local” conductance rT , unless the local con-

ductance depends on the local temperatures of the CNTs.

To compare the temperature profiles predicted by Eqs.

(A4) with the results of an MD simulation, these profiles are

plotted in Fig. 3(c) for values of LT , Dx12, and Q ¼ �QHB=2

that are used in the MD simulation illustrated in Fig. 3, kT

¼ 226 Wm�1K�1 predicted in MD simulations for LT

¼ 200 nm, and the time-averaged values of T12 and DT12

drawn from the MD simulation. Based on these parameters, the

value of inter-tube conductance rT ¼ 0:06 Wm�1K�1 is calcu-

lated with Eq. (A7), and all other constants are calculated with

Eqs. (A6). The temperature profiles shown in Fig. 3(c) exhibit

good agreement between the predictions of the theoretical

model and results of MD simulations. This agreement demon-

strates that the results of the atomistic simulations of heat trans-

fer between two parallel partially overlapping CNTs can be

accurately approximated by the analytical model based on the

assumption that the total conductance through the overlap

region is proportional to the overlap length.

APPENDIX B: CONDUCTIVITY OF A TWO-AXIS
BUNDLE AT A FINITE BIOT NUMBER

In this appendix, an analytical solution of the problem

of conductivity along an infinitely long two-axis bundle is

obtained for finite Biot numbers. In order to provide the solu-

tion in the simplest mathematical form and to avoid addi-

tional complications, only the most important case, when the

axial inter-tube separation, D, is equal to zero, is considered.

A unique indexing of CNTs discussed in Sec. III A and illus-

trated in Fig. 6 for a bundle of finite length is used in the

analysis. We assume that x ¼ 0 corresponds to the left end of

a CNT with k ¼ 1 located on axis 1, i.e., d1 ¼ 0. The relative

positions of CNTs on the second axis are then defined by pa-

rameter dð¼ d2Þ, which is equal to the distance between left

ends of CNT 1 on axis 1 and CNT 1 on axis 2. In an infin-

itely long bundle, the distribution of temperature along dif-

ferent CNTs is a quasi-periodic function of coordinate x,

namely

T
ðnÞ
k ðxÞ ¼ T

ðnÞ
k�1ðx� LTÞ þ rTxLT ; n ¼ 1; 2 ; (B1)

where rTx is the imposed temperature gradient along the

bundle axis. Thus, it is sufficient to find the temperature dis-

tributions along only one CNT on each axis, e.g., CNT 1 on

axis 1 and CNT 2 on axis 2. These CNTs are called CNTs 1

and 2 in further discussion and their temperature distribu-

tions are denoted as T1ðxÞ ¼ T
ð1Þ
1 ðxÞ and T2ðxÞ ¼ T

ð2Þ
2 ðxÞ.

Our goal is to find T1ðxÞ and T2ðxÞ for given Bi and d.

These distributions must satisfy Eq. (17) that also contains

temperature distributions T
ð2Þ
1 ðxÞ and T

ð1Þ
2 ðxÞ of CNTs that

have overlaps with CNTs 1 and 2. These temperature distri-

butions, however, can be easily expressed through distribu-

tions of temperature in CNTs 1 and 2 by applying Eqs. (B1).

Thus, one can write a closed systems of equations with

respect to T1ðxÞ and T2ðxÞ. This system in the dimensionless

form can be written as follows:
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d2T 1

dx2
¼ Bi � ðT1 � T2ðx þ 1Þ þ 1Þ for 0 � x � d; (B2a)

d2T 1

dx2
¼Bi �ðT1�T 2Þ;

d2T 2

dx2
¼Bi �ðT2�T1Þ for d�x�1;

(B2b)

d2T2

dx2
¼ Bi � ðT 2 � T1ðx � 1Þ � 1Þ for 1 � x � 1þ d;

(B2c)

where d ¼ d=LT .

In order to further simplify Eqs. (B2), one can split its solu-

tion into two parts, one for 0 � x � d and another for

d � x � 1. At 0 � x � d, we look for the solution in terms of

functions T 0 1ðxÞ ¼ T1ðxÞ and T02ðxÞ ¼ T2ðx þ 1Þ, while keep-

ing the notation T1ðxÞ and T2ðxÞ for the solution at d � x � 1.

Then, Eqs. (B2) can be rewritten in the following form:

d2T
0
1

dx2
¼ Bi � ðT 01 � T

0
2 þ 1Þ;

d2T
0
2

dx2
¼ Bi � ðT 02 � T

0
1 � 1Þ for 0 � x � d;

(B3)

d2T1

dx2
¼ Bi � ðT1�T2Þ;

d2T2

dx2
¼ Bi � ðT2�T1Þ for d � x � 1;

(B4)

where all functions in all equations are defined at the same

point x.

The general solution of Eqs. (B3) can be written in the

form

T
0
1ðxÞ ¼

1

2
ðA1x þ B1 � C1e

ffiffiffiffiffi
2Bi
p

x � D1e�
ffiffiffiffiffi
2Bi
p

x � 1Þ; (B5)

T
0
2ðxÞ ¼

1

2
ðA1x þ B1 þ C1e

ffiffiffiffiffi
2Bi
p

x þ D1e�
ffiffiffiffiffi
2Bi
p

x þ 1Þ; (B6)

where constants A1, B1, C1, and D1 can be chosen based on

appropriate boundary conditions. The general solution of

Eqs. (B4) can be written in a similar manner:

T1ðxÞ ¼
1

2
ðA2x þ B2 � C2e

ffiffiffiffiffi
2Bi
p

x � D2e�
ffiffiffiffiffi
2Bi
p

xÞ; (B7)

T2ðxÞ ¼
1

2
ðA2x þ B2 þ C2e

ffiffiffiffiffi
2Bi
p

x þ D2e�
ffiffiffiffiffi
2Bi
p

xÞ; (B8)

where constants A2, B2, C2, and D2 can be chosen based on

appropriate boundary conditions.

In order to find the constants in Eqs. (B5)–(B8), we

apply boundary conditions that imply zero derivatives of

temperature at all CNT ends and continuity of temperature

and its first derivative along the CNTs. These conditions can

be written as follows:

dT
0
1

dx

����
x¼0

¼ dT1

dx

����
x¼1

¼ dT
0
2

dx

����
x¼d

¼ dT2

dx

����
x¼d

¼ 0; (B9a)

dT
0
1

dx

����
x¼d

¼ dT1

dx

����
x¼d

; T
0
1ðdÞ ¼ T1ðdÞ; (B9b)

dT
0
2

dx

����
x¼0

¼ dT2

dx

����
x¼1

; T
0
2ð0Þ ¼ T2ð1Þ: (B9c)

By inserting Eqs. (B5)–(B8) into conditions given by Eqs.

(B9), one can write

A1 �
ffiffiffiffiffiffiffi
2Bi
p

ðC1 � D1Þ ¼ 0; (B10)

A1 þ
ffiffiffiffiffiffiffi
2Bi
p

ðC1e
ffiffiffiffiffi
2Bi
p

d � D1e�
ffiffiffiffiffi
2Bi
p

dÞ ¼ 0; (B11)

A2 �
ffiffiffiffiffiffiffi
2Bi
p

ðC2e
ffiffiffiffiffi
2Bi
p
� D2e�

ffiffiffiffiffi
2Bi
p
Þ ¼ 0; (B12)

A2 þ
ffiffiffiffiffiffiffi
2Bi
p

ðC2e
ffiffiffiffiffi
2Bi
p

d � D2e�
ffiffiffiffiffi
2Bi
p

dÞ ¼ 0; (B13)

A1 �
ffiffiffiffiffiffiffi
2Bi
p

ðC1e
ffiffiffiffiffi
2Bi
p

d � D1e�
ffiffiffiffiffi
2Bi
p

dÞ

¼ A2 �
ffiffiffiffiffiffiffi
2Bi
p

ðC2e
ffiffiffiffiffi
2Bi
p

d � D2e�
ffiffiffiffiffi
2Bi
p

dÞ; (B14)

A1d þ B1 � C1e
ffiffiffiffiffi
2Bi
p

d � D1e�
ffiffiffiffiffi
2Bi
p

d � 1

¼ A2d þ B2 � C2e
ffiffiffiffiffi
2Bi
p

d � D2e�
ffiffiffiffiffi
2Bi
p

d ; (B15)

A1 þ
ffiffiffiffiffiffiffi
2Bi
p

ðC1 � D1Þ ¼ A2 þ
ffiffiffiffiffiffiffi
2Bi
p

ðC2e
ffiffiffiffiffi
2Bi
p
� D2e�

ffiffiffiffiffi
2Bi
p
Þ;

(B16)

B1 þ C1 þ D1 þ 1 ¼ A2 þ B2 þ C2e
ffiffiffiffiffi
2Bi
p
þ D2e�

ffiffiffiffiffi
2Bi
p

:

(B17)

Equation (B14) combined with Eqs. (B11) and (B13)

results in A1 ¼ A2. Therefore, we further use notation A for

both A1 and A2. Equation (B16) combined with Eqs. (B10)

and (B12) results in the same equation A1 ¼ A2, suggesting

that Eqs. (B10)–(B17) represent a degenerated linear system

that has an infinitely large number of non-trivial solutions

for given values of Bi and d. In order to find a unique solu-

tion of Eqs. (B10)–(B17), one needs to replace Eq. (B14) or

Eq. (B16) by an equation that explicitly defines a “reference”

value of temperature of a CNT at a particular location along

the bundle. For an infinitely long bundle with a quasi-

periodic distribution of temperature, the choice of the refer-

ence temperature is arbitrary and unavoidably results in a

temperature distribution that spans both positive and nega-

tive values. For simplicity, we replace Eq. (B16) by the con-

dition T1ðdÞ ¼ 0, which results in the following equation:

Ad þ B1 � C1e
ffiffiffiffiffi
2Bi
p

d � D1e�
ffiffiffiffiffi
2Bi
p

d � 1 ¼ 0: (B18)

Combining this equation with Eq. (B15), one can write

Ad þ B2 � C2e
ffiffiffiffiffi
2Bi
p

d � D2e�
ffiffiffiffiffi
2Bi
p

d ¼ 0: (B19)

Constants C1, D1, C2, and D2 can be expressed through

constant A from Eqs. (B10)–(B13) as follows:

C1 ¼ �
Affiffiffiffiffiffiffi
2Bi
p 1þ e�

ffiffiffiffiffi
2Bi
p

d

e
ffiffiffiffiffi
2Bi
p

d � e�
ffiffiffiffiffi
2Bi
p

d
;

D1 ¼ �
Affiffiffiffiffiffiffi
2Bi
p 1þ e

ffiffiffiffiffi
2Bi
p

d

e
ffiffiffiffiffi
2Bi
p

d � e�
ffiffiffiffiffi
2Bi
p

d
;

(B20)
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C2 ¼
Affiffiffiffiffiffiffi
2Bi
p 1

e
ffiffiffiffiffi
2Bi
p
� e

ffiffiffiffiffi
2Bi
p

d
; D2 ¼

Affiffiffiffiffiffiffi
2Bi
p 1

e�
ffiffiffiffiffi
2Bi
p

d � e�
ffiffiffiffiffi
2Bi
p :

(B21)

Constants B1 and B2, in turn, can be expressed through A by

inserting Eqs. (B20) into Eq. (B18) and Eqs. (B21) into Eq.

(B19). Finally, the constant A can be found by inserting Eqs.

(B18)–(B21) into Eq. (B17), yielding the following

expression:

AðBi; dÞ ¼ 2
ffiffiffiffiffiffiffi
2Bi
p ffiffiffiffiffiffiffi

2Bi
p

þ 2
e
ffiffiffiffiffi
2Bi
p

d þ e�
ffiffiffiffiffi
2Bi
p

d þ 2

e
ffiffiffiffiffi
2Bi
p

d � e�
ffiffiffiffiffi
2Bi
p

d

 

þ2
e
ffiffiffiffiffi
2Bi
p

ð1�dÞ � e�
ffiffiffiffiffi
2Bi
p

ð1�dÞ

e
ffiffiffiffiffi
2Bi
p

ð1�dÞ þ e�
ffiffiffiffiffi
2Bi
p

ð1�dÞ � 2

!�1

: (B22)

Thus, Eqs. (B5)–(B8), where constants are defined by

Eqs. (B18)–(B22), enable calculation of temperature distri-

bution in any CNT that belong to an infinitely long two-axis

bundle for given values of Bi and d.

The heat flux, Qpair , propagating through the bundle can

be calculated in a number of different ways, e.g., as Qpair

¼ �kTATdT1=dxjx¼d or Qpair ¼ rT

Ð LT

d ðT1 � T2Þdx, which

yields the same result

Qpair ¼ �rTL2
TrTx

AðBi; dÞ
Bi

: (B23)
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