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ABSTRACT

A general framework for the theoretical analysis and numerical calculations of the effective thermal conductivity of two-dimensional homo-
geneous and isotropic disordered fibrous materials is developed in this work based on the model of random contacts between soft-core
spherocylinders. The analysis accounts for the interfiber contact conductance and intrinsic conductivity of fibers and is performed in a wide
space of governing parameters that includes the fiber aspect ratio, Biot number calculated for a single thermal contact between fibers, and
material density ranging from values corresponding to the percolation threshold up to those characteristic of dense fiber networks. For
dense networks, exact theoretical equations for the thermal conductivity of materials composed of spherocylinders with an arbitrary aspect
ratio and Biot number are derived. The effect of the intrinsic conductivity of fibers on the thermal transport in fibrous materials is found to
depend on the density of contacts and can be significant in sufficiently dense fiber networks even if the Biot number for a single thermal
contact is small. Semiempirical corrections to the theoretical equations are derived for small and moderate fiber densities. The power law
exponent describing the approximate dependence of the conductivity on the density parameter is found to vary from values close to 1 up to
values exceeding 2 when evaluated within different finite ranges of the density parameter. This finding explains the variability of scaling
laws for thermal conductivity of fibrous materials suggested in the literature based on numerical simulations performed in different regions
of the space of material parameters.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136238

I. INTRODUCTION

A variety of materials can be thought of as disordered net-
works of fibers, wires, or rod-like particles. Examples of such
materials include carbon fibers and nanotubes, metallic nano-
wires, inorganic powders composed of needle-like particles, fabric,
paper, and other organic fiber network materials. Fibrous materi-
als are widely used in thermal management applications, both for
thermal insulation and thermal transport, since their thermal
transport properties can be tailored by engineering the material
structure and tuned in a broad range without changing the physi-
cal properties of individual fibers. The bulk conductivity of many

common fibrous materials is controlled by the intrinsic conduc-
tivity of fibers, while the resistance of interfiber thermal contacts
is small and can be neglected. The thermal transport properties
of such fibrous materials have been extensively studied during
the past few decades based on the random resistor network
models1,2 applied for both electrical and thermal transports. Near
the percolation threshold, the conductivity of such materials
obeys a power law with a universal exponent that depends only
on the dimensionality of the system,2 while far above the percola-
tion threshold, the conductivity exhibits a linear dependence on
the fiber density.3
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During the last two decades, interest in thermal properties of
disordered fibrous materials was reignited by the emergence and
proliferation of nanofibrous materials composed of carbon nano-
tubes (CNTs). The CNT materials, such as films,4–7 mats,8–10 aero-
gels,11,12 forests,13 fabric,14 and “buckypaper,”15 form a new class of
disordered materials with intriguing thermal properties that do not
obey theoretical predictions derived for conventional fibrous mate-
rials. Although individual CNTs are perfect thermal conductors
with measured16–19 and calculated20–29 thermal conductivity
ranging from a few hundred Wm−1 K−1 to ∼3500Wm−1 K−1 and
even 6600Wm−1 K−1, the measured bulk thermal conductivity of
CNT materials is a few orders of magnitude smaller and varies
from ∼0.1Wm−1K−1 to ∼200Wm−1K−1.30–37 The analysis of the
experimental data and theoretical considerations indicate that the
thermal conductivity of CNT materials is limited by extremely
small contact conductance, leading to a weak thermal coupling
between adjacent nanotubes.38–43 This observation allows one to
consider CNT materials as “nonclassical” materials, where bulk
conductivity is defined by the resistance of the intertube contacts.44

Based on this conclusion, a model of thermal transport in such
nonclassical materials was suggested,44 where the intrinsic conduc-
tivity of fibers is assumed to be infinitely large and, correspond-
ingly, every fiber is considered as an isothermal object. Such a
model was used in multiple theoretical studies and numerical simu-
lations of the thermal conductivity of dilute fiber systems and fiber
reinforced composites with fiber densities close to the percolation
threshold,45–50 as well as dense fibrous materials.3,42,51–57 The theo-
retical consideration of the thermal transport based on the model
of isothermal fibers reveals the quadratic scaling of conductivity
with the fiber length and material density,3,54,56 while other scaling
exponents, both smaller and larger than 2, were also deduced from
numerical simulations and experiments.51,52 The unusual quadratic
scaling law is explained by the fact that both the density of thermal
contacts and average energy flux through a single contact scale line-
arly with the fiber length and material density. The mesoscopic
simulations in Ref. 56 also showed that the quadratic scaling with
nanotube length approximately holds even in continuous networks
of flexible nanotubes, where CNTs are self-assembled into entan-
gled and interconnected bundles by van der Waals attraction. A
nearly quadratic scaling of the conductivity of the CNT films with
the material density was then confirmed experimentally.58

The numerical calculations of the conductivity of two-
dimensional57 (2D) and three-dimensional55 (3D) systems of
slender rods with finite intrinsic conductivity revealed a gradual
transition from the case when the thermal transport is controlled
by the thermal contact conductance to the behavior characteristic
of ordinary fibrous materials, where the conductance is defined by
the intrinsic conductivity of the fibers. The mesoscopic simulations
of CNT films with a realistic structure of continuous nanotube net-
works59 have shown that this transition occurs in the practically
important range of CNT length from a few hundred nm to a few
μm, thus suggesting that the model of isothermal fibers is not suit-
able for quantitative description of the bulk thermal conductivity of
CNT materials composed of CNTs longer than several hundred
nm. These results were explained using a theoretical method for
calculation of thermal conductivity in networks of nonisothermal
fibers developed in Ref. 59 based on the assumption of linear

temperature distribution along a fiber. This analysis clearly shows
that the effect of the intrinsic conductivity depends not on the
contact conductance of a single contact but on the total conduc-
tance of all contacts of a fiber, which increases with increasing
material density. The theoretical consideration in Ref. 59 yielded a
simple equation that predicts a gradual variation of thermal con-
ductivity between the limits corresponding to the contact-
dominated and intrinsic fiber conductivity-dominated regimes. It
has been shown that, with a proper definition of density of thermal
contacts, this equation provides an adequate description of the con-
ductivity not only for systems of straight dispersed fibers but also
for realistic continuous networks of bundles of carbon nanotubes.
A similar equation was also suggested in Refs. 55 and 57 as a fit to
the results of numerical simulations. Recently, the approach devel-
oped in Ref. 59 was generalized for anisotropic fiber systems.60

Despite the recent progress in the development of the theoretical
understanding of the thermal conductance of fibrous network
materials, however, the reported studies have been largely limited
to either the consideration of special limiting cases amenable to
approximate analytical treatment or numerical simulations per-
formed for limited ranges of material parameters.

The goal of the present paper is to develop a comprehensive
theoretical model for predicting the thermal conductivity of fibrous
materials at virtually any material density, aspect ratio of fibers,
and ratio of intrinsic and contact conductances. For this purpose,
we adopt a soft-core model of fibers in the form of spherocylinders
(SCs)47,61–64 and assume a one-dimensional distribution of temper-
ature along an individual fiber. Our approach, in the case of suffi-
ciently dense systems, is based on the exact solutions of thermal
transport problem and, in contrast to Ref. 59, does not require any
ad hoc assumptions about the temperature distribution
along fibers. We demonstrate that the scaling laws suggested in
Refs. 55, 57, 59, and 60 to describe the effect of the intrinsic con-
ductivity of fibers are, in fact, approximations of the analytically
derived dependences obtained in the present paper. Furthermore,
we show that the scaling laws obtained for dense fibrous systems
quickly deviate from the theoretical solutions obtained in
Refs. 53–57, 59, and 60 with decreasing material density and cannot
be used not only under conditions when the material density is close
to the percolation threshold but also for semidilute fiber networks.
The deviations from the theoretical solution obtained in the high-
density limit can only be revealed through numerical simulations of
fiber systems performed in the broad density range, from the perco-
lation threshold to conditions corresponding to dense materials.
Using semianalytical treatment guided by numerical simulations, we
obtain conductivity equations that are valid even fairly close to the
percolation threshold. These equations predict a rather complex
dependence of the conductivity on the physical and geometrical
parameters of fibers and their density, in accurate agreement with
the results of direct numerical simulations. We show, in particular,
that the conductivity exponent, if obtained for a limited density
range, can vary from 1 up to values larger than 2. This observation
can explain the variability of scaling exponents reported in the litera-
ture based on experiments and simulations.

In the present paper, we limit our consideration to 2D fibers
systems, so that the obtained results can be applied to disordered
2D fibrous materials, such as quasi-2D layered CNT systems,65 thin

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 065102 (2020); doi: 10.1063/1.5136238 127, 065102-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


CNT films,5,6,7,53 flexible electronic devices,66–68 and 2D nanocom-
posite materials,50 where the fibers or nanotubes are preferentially
oriented parallel to the plane of the film, are randomly distributed
and oriented within the film, and exhibit distinct 2D percolation
behavior.45 The case of 3D fibrous materials with a random orien-
tation of fibers will be considered in another paper.69

II. SOFT-CORE RANDOM CONTACT MODEL FOR
THERMAL CONDUCTIVITY OF DISORDERED FIBROUS
MATERIALS

We consider a material composed of straight fibers, where
every fiber has a shape of a spherocylinder (SC), i.e., a circular cyl-
inder of length Lf and external radius Rf capped on both of its
ends by two hemispheres, as depicted in Fig. 1(a). A SC can repre-
sent either a rod with the cross-sectional area Af ¼ πR2

f or a tube
with the cross-sectional area Af ¼ πδf (2Rf � δf ), where δf is the
thickness of the tube wall. Though other geometrical models of
fibers can also be used, e.g., a model of a simple cylinder, the SC
model allows us to describe a gradual transition from slender rods
to spherical particles by variation of Lf and Rf and to compare our
computational results, e.g., on the percolation threshold, with the
results of earlier studies.47,61–64 In this paper, since we limit our
consideration to 2D fibrous materials, the axes of all SCs are placed
in the same plane. The centers of SCs and their orientations are
chosen randomly within this plane. The density of the 2D material
is characterized by the surface number density nS defined as the
number of SC centers per unit area. In this case, every SC is a rect-
angle with dimensions of (2Rf )� Lf capped by two semicircles of
radius Rf . Despite its 2D nature, this plane object is referred to in
this paper as a “spherocylinder.”

The model of thermal transport in the fibrous material is
based on the model of soft-core (interpenetrating) SCs.64 In the
soft-core model, individual SCs can intersect each other as it is
schematically shown in Fig. 1(b). Every intersection is considered a
thermal contact between SCs and further referred to as a “junc-
tion.”70 A junction between SCs i and j occurs if these SCs partially
overlap each other and the distance r between nearest points Jij and
J ji on the SC axes within their rectangular parts is smaller than 2Rf

(Fig. 2). The existence of a junction between SCs i and j is charac-
terized by the variable δij, which is assumed to be equal to 1 if the
contact between SCs i and j exists, otherwise δij ¼ 0. The distribu-
tion of temperature in a fiber is assumed to be steady-state and

one-dimensional, i.e., Ti ¼ Ti(li), where li is a coordinate counted
along the fiber axis [Fig. 1(a)]. Two modes of thermal transport are
taken into account, namely, the intrinsic conduction of individual
SCs and the contact conduction between them. The intrinsic
thermal conduction is assumed to be described by the Fourier law

Qi ¼ �kf
dTi

dli
Af , (1)

where Qi ¼ Qi(li) is the heat flux through the cross section of fiber
i at a position defined by coordinate li and kf is the constant value
of fiber thermal conductivity. Note that thermal conductivity of a
fiber represented by a SC does, in general, depend on its tempera-
ture and length. The length dependence, in particular, is usually
explained by a contribution of the ballistic thermal transport in
fibers shorter than (or comparable to) the phonon mean free path,

FIG. 1. Schematic representation of a
fiber in the form of a rod or a tube
modeled by a SC with corresponding
cross sections (a) and a junction
between two nonparallel 2D SCs (b).

FIG. 2. Junction between two soft-core SCs. The closest distance r is realized
between points Jij and J ji on the SC axes within their cylindrical (rectangular in
2D) parts and varies in the range 0 � r � 2Rf . The junction point J is defined
as the middle point between points Jij and J ji . The points Ci and Cj are geomet-
rical centers of SCs. For brevity, only a special case of r ¼ 2Rf is shown in the
sketch. The definitions of all geometrical parameters of a junction, however, do
not depend on this restriction, since the soft-core SCs can freely interpenetrate
each other. The general case of arbitrary r , 2Rf can be obtained by replacing
the colored objects with SCs of larger radius Rf without changing any other part
of the sketch.
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as discussed, e.g., for CNTs in Refs. 20 and 25–29. Nevertheless, for
a system composed of fibers with the same length and with no
large temperature variations, the assumption of a constant intrinsic
thermal conductivity is justified.

The contact heat transfer between SCs i and j may, in general,
depend on the orientation of the SCs with respect to each
other,71,72 with a particularly strong dependence expected at small
misorientation angles between the SCs. In the case considered in
this paper, when individual SCs are homogeneously distributed
and randomly oriented, the number of pairs of adjacent SCs that
are close to being parallel to each other is expected to be small, and
the presence of such pairs can be neglected. Thus, in the analysis
reported in this paper, the contact heat flux Qij is assumed to be
independent of the relative orientation of SCs and is equal to

Qij ¼ σc(Tj(l ji)� Ti(lij)), (2)

where lij is the coordinate of a junction between fibers i and j on
the axis of fiber i [Fig. 1(b)] and σc is the constant contact conduc-
tance. The coordinate xij = x ji of the contact point between fibers i
and j on the axis Ox is the coordinate of the point of intersection
of the axes of fibers i and j or, when the axes do not cross each
other, the center point on the interval connecting the points Jij and
J ji, as illustrated in Fig. 2. The bulk thermal conductivity of the
fibrous material, k, is calculated by creating a temperature gradient
in the material along the axis Ox and applying the Fourier law
adopted for the 2D case,

hQxi ¼ �k∇TxLy; (3)

where hQxi is the ensemble-average value of the heat flux through
the cross section of length Ly , which is perpendicular to the axis
Ox, k is the thermal conductivity of 2D systems expressed in units
of W K−1, and ∇Tx ¼ dT=dx is the spatial derivative of the average
material temperature T(x).

In the present paper, we systematically use dimensionless
(reduced) variables that are denoted by a bar over the variable
name to distinguish them from corresponding dimensional vari-
ables. All length, temperature, and conductivity variables in
reduced units are introduced by scaling them by Lf , ∇TxLf , and σc,
respectively, e.g., �x ¼ x=Lf , �Ti ¼ Ti=(∇TxLf ), and �k ¼ k=σc. Then,
according to Buckingham’s Π-theorem,73 any dimensionless
parameter in the considered problem depends on three indepen-
dent dimensionless governing parameters. These parameters can be
introduced in the form of the density parameter �nS ¼ nSL2f , i.e.,
average number of SCs in a square Lf � Lf , aspect ratio
�Rf ¼ Rf =Lf , and the ratio of the intrinsic, σ f ¼ kf Af =Lf , and
contact, σc, conductances,

Bic ¼ σc

σ f
¼ σcLf

kf Af
, (4)

which is referred to as the “Biot number for a single contact.”59

The reduced bulk conductivity can then be represented as
�k ¼ �k(�nS, �Rf , Bic). The case of small Bic is characteristic for CNTs
due to their extremely large thermal conductivity.16,17,20,22–26

III. THE MONTE CARLO METHOD FOR NUMERICAL
CALCULATION OF CONDUCTIVITY

The Monte Carlo calculations of thermal conductivity were
performed for square samples of dimension LS (Lx ¼ Ly ¼ LS) in
Cartesian coordinates Oxy, where the center O coincides with the
sample center, while the axes Ox and Oy are parallel to the sample
boundaries. The sample size LS is chosen to be larger than 2L ff ,
where L ff ¼ Lf þ 2Rf is the total SC length. In order to calculate k
numerically, based on Eq. (3), we generate a series of samples with
random distributions of fibers at fixed nS, Lf , Rf , and LS as
described in Sec. III A. For every random sample, we solve the
thermal transport problem as described in Secs. III B and III C
and calculate the heat flux Qx through the sample and temperature
distribution in every fiber. These quantities are then averaged over
an ensemble of generated samples in order to obtain Qx and ∇Tx

in Eq. (3). Whenever necessary, we determine many other
ensemble-average parameters along with Qx and T(x), which are
denoted by h . . . i, e.g., the percolation probability PP ¼ hSPi, where
SP is equal to either 1 or 0 depending on whether the percolating
cluster exists in a particular sample or not (see Sec. III A). All these
parameters are calculated numerically as arithmetic means of corre-
sponding parameters for individual random samples. Each sample
is divided into a one-dimensional mesh of cells with the size
Δx ¼ 0:02L ff in the direction of the axis Ox in order to obtain the
distribution of the average material temperature T(x). The value of
T(x) in a given cell is then calculated as a weighted average temper-
ature of SCs present in this cell, with contributions from different
SCs weighted by parts of their length that belong to the cell.

A. Generation of samples with a random structure

At the first stage of sample preparation for desired values of
nS, Lf , Rf , and LS, the number of SCs in the sample is calculated as
N ¼ nSL2S , and N SCs are randomly generated and distributed
within the area of the sample. The criterion of the junction exis-
tence is then applied to all pairs of SCs, and the variable δij is
determined for all i and j. As a precaution, the junctions between
almost parallel SCs with sin2 ϑij , 10�10, where ϑij is the angle
between axes of fibers i and j, are neglected, although most of the
randomly generated samples do not contain such pairs of fibers at
all. Next, the SCs intersecting the right and left sample boundaries
at jxj ¼ LS=2 are identified. It is assumed that all SCs intersecting
these boundaries are linked to the heat baths and have fixed tem-
peratures of TB1 and TB2. In order to characterize the position of
every SC in the sample with respect to the heat baths, a variable χi
is introduced, which is equal to 1 if SC i crosses the line
x ¼ �LS=2, 2 if SC i crosses the line x ¼ LS=2, and 0 for other SCs.
The condition Lx . L ff guarantees the absence of SCs that are con-
nected simultaneously to both heat baths. Other boundaries of the
sample are assumed to be periodic, and the minimum image con-
vention74 is used to determine relative positions of SCs in the
y-direction. Hence, a gradient of average temperature in the
samples exists only in the x-direction. The condition Ly . 2L ff

ensures the absence of “self-interaction” among SCs and the appli-
cability of the minimal image conversion approach. For sufficiently
large samples (see Sec. IV), the calculated thermal conductivity
does not depend on the imposed temperatures of the heat baths,
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TB1 and TB2, since the thermal properties of individual fibers are
assumed to be independent of the temperature.

If �nS is small, SCs can form isolated clusters, i.e., groups of SCs
that have junctions only with SCs of the same group. The disintegra-
tion of a continuous network into clusters plays a very important
role in the conductivity of disordered materials near the percolation
threshold,2 i.e., the minimum density when an infinitely large sample
contains a percolating cluster that connects opposing boundaries of
the sample. We perform a cluster identification procedure74 that
allows us to decompose the sample into individual clusters and iden-
tify the SCs belonging to non-percolating clusters. All non-percolating
clusters are excluded from further thermal transport calculations. For
each sample, we introduce its percolation state SP that is equal to 1 if
the sample contains at least one percolating cluster and 0 otherwise.

B. Thermal model for fibers with infinitely large
intrinsic conductivity

If the intrinsic conductivity of fibers is infinitely large and,
correspondingly, Bic ¼ 0, then the temperature Ti of SC i is cons-
tant and does not vary along the SC length. In a steady state, the
temperature of SC i with χi ¼ 0 can be found from the balance of

all incoming contact heat fluxes,
PN
j¼1

δijQij ¼ 0, where Qij is defined

by Eq. (2), while the temperatures of all SCs with χi ¼ 1, 2 are kept
equal to the heat bath temperatures. That is, the temperatures of
SCs belonging to percolating clusters can be found by solving the
following system of equations:

XN
j¼1

δij(Tj � Ti) ¼ 0, if χi ¼ 0, (5a)

Ti ¼ TBχi , if χi ¼ 1, 2: (5b)

It is convenient to introduce additional functions χi(x),
δij(þ)(x), and δij(�)(x) in order to formulate compact equations for
the heat flux Qx(x) through an arbitrary sample cross section with
coordinate x. The function χi(x) is equal to 1 if SC i intersects the
cross section x ¼ const, otherwise χi(x) ¼ 0. The function δij(þ)(x)
indicates the position of the junction between SCs i and j with
respect to the plane x ¼ const, such that δij(þ)(x) ¼ 1 if δij ¼ 1 and
xij � x, otherwise δij(þ)(x) ¼ 0. Similarly, δij(�)(x) ¼ 1 if δij ¼ 1
and xij , x, otherwise δij(�)(x) ¼ 0. The fluxes of heat Q(þ)(x) and
Q(�)(x) transferred in positive and negative directions of the axis
Ox through a sample cross section can then be found by summing
the contact heat fluxes for all SCs crossing this cross section and all
junctions located to the right and left from it, respectively, i.e.,

Q(þ)(x) ¼ �
XN
i¼1

χi(x)
XN
j¼1

δij(þ)(x)Qij, (6)

Q(�)(x) ¼
XN
i¼1

χi(x)
XN
j¼1

δij(�)(x)Qij: (7)

In the steady state, owing to Eq. (5a), Q(þ)(x) is independent
of x if x � LS=2� L ff , and Q(�)(x) is independent of x if

x � �LS=2þ L ff . For such x, both Q(þ)(x) and Q(�)(x) must be
equal to the invariant heat flux Qx through the sample in the direc-
tion of the axis Ox: Qx ¼ Q(þ)(x) ¼ Q(�)(x). In particular, Qx is
equal to both QB1 ¼ Q(þ)(�LS=2) and QB2 ¼ Q(�)(LS=2) defined at
the left and right boundaries. The independence of Q(þ)(x) and
Q(�)(x) on x, if x is in the ranges mentioned above, can be used for
verification of the numerical solutions of the linear system given by
Eq. (5). In the present paper, this system is solved iteratively by the
Gauss–Seidel method75 until jQB1 � QB2j , (1=2)(QB1 þ QB2)ΔQ,
where the tolerance ΔQ is taken to be equal to 10�9. At �nS � 300,
the number M of the generated samples used for calculation of
ensemble-average parameters at constant �nS and �Rf was equal to
104, while M ¼ 103 was adopted at �nS . 300.

C. Thermal model for fibers with finite intrinsic
conductivity

In this section, we consider a case of finite, i.e., noninfinite
and nonzero, Biot number, when the intrinsic thermal conductivity
of fibers and interfiber contact conductance are finite. Note that
the conductivity of semicircular “caps” of SCs is still assumed to be
infinitely large. Then the steady-state distribution of temperature
Ti(li) along the axis of SC i that belongs to a percolating cluster and
is not attached to the heat baths can be found from the heat con-
duction equation,59

d
dli

Af kf
dTi

dli

� �
¼ �

XN
j¼1,δij¼1

δ(li � lij)Qij, if χi ¼ 0, (8)

where δ(l) is the Dirac δ-function and Qij ¼ σc(T ji � Tij), with
Tij ¼ Ti(lij) and Tji ¼ Tj(l ji) being the temperatures of SCs i and j
at the corresponding junction. Equation (8) should be solved with
the boundary conditions at the SC ends,

Af kf
dTi

dli

����
li¼0

¼ �
XN

j¼1,δij¼1,lij¼0

Qij, (9a)

Af kf
dTi

dli

����
li¼Lf

¼
XN

j¼1,δij¼1,lij¼Lf

Qij, (9b)

while temperatures of SCs with χi ¼ 1, 2 are assumed to be cons-
tant, as required by Eq. (5b).

The gradient of temperature dTi=dli is constant between
neighbor junctions according to Eq. (8) and, hence, the SC temper-
ature is a piecewise-linear function of li. The temperature distribu-
tion along a SC is then completely determined by values of
temperature at the junctions. The formulation of equations with
respect to the discrete values of temperature at the junctions
requires the introduction of additional notation, since these values
in every SC must be numbered in the order of increasing lij. If one
assumes that SC i has Ni junctions with other SCs in points
l0im (0 , l0im , Lf ) where the temperatures are equal to T 0

im
(m ¼ 1, . . . , Ni) and l0im increases with m, then the distribution
of temperature in SC i is completely defined by the array
(T 0

i1, . . . , T
0
iNi
). The prime in l0im and T 0

im is used to highlight the
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fact that the second subscript in these quantities is the index of a
junction and, thus, T 0

im is different from Tij that appears in
Eq. (8), where a subscript is the index of a second SC forming
the junction. Note that mapping of Tij to T 0

im or vice versa can be
easily performed in computational codes, but it is not necessary
for the analysis reported in other parts of this paper. Therefore,
the notation with prime marks, introduced above, is only used in
this section.

The values in array (T 0
i1, . . . , T

0
iNi
) must satisfy equations that

can be obtained by integrating Eq. (8) over the intervals
[(l0im�1 þ l0im)=2, (l

0
im þ l0imþ1)=2]:

�T 0
imþ1 � �T 0

im

�l
0
imþ1 ��l

0
im

�
�T 0
im � �T 0

im�1

�l
0
im ��l

0
im�1

¼ Bic(�T
0
im � �T 0

i0(i,m)m0(i,m)), (10)

where functions i0(i, m) and m0(i, m) define the index of a SC and
index of a junction in that SC, which is paired to form junction m
with SC i. In Eq. (10), the bar over variable names is used to
denote dimensionless values of length �l

0
im and temperature �T 0

im
according to the convention introduced at the end of Sec. II.

The system of Eq. (10) with boundary conditions given by
Eq. (9) for internal SCs and Eq. (5b) for fibers directly connected
to the heat baths is solved iteratively by the Gauss–Seidel method.
The heat flux Qx is then calculated based on Eqs. (6) or (7), where
Qij is defined by Eq. (2).76 The matrix of coefficients of this linear
system is ill-conditioned if distances between neighbor junctions
Δl0im ¼ l0imþ1 � l0im are very small, and it becomes singular if any
Δl0im ¼ 0. In order to regularize the system, we combine the neigh-
bor junctions into a group if the distance between them Δl0im is
smaller than a small positive constant Δlmin, which serves as a reg-
ularization parameter, and assume that all junctions in a group
have the same temperature. In preliminary simulations at �Rf ¼ 0
and Bic ¼ 10, we found that the error in �k due to finite value of
the regularization parameter is less than 0.6% at Δlmin=Lf � 0:01
and becomes as large as 8% at Δlmin=Lf ¼ 0:1. Further simulations
show that the numerical error in �k strongly increases when Bic
and �nS exceed the levels of Bic � 10 and �nS � 100. Based on these
results, a value of Δlmin=Lf ¼ 0:01 is adopted in all simulations
where Bic , 10 and �nS , 100. In simulations performed for
Bic � 10 and �nS � 100, a reduced value of Δlmin=Lf ¼ 0:003 is
used. It is worth noting that the correct scaling behavior of �k at
�nS ! 1 (Sec. VII) can be established numerically only if Δlmin=Lf
is sufficiently small to avoid excessive errors due to regularization.
All other numerical parameters in simulations performed with
finite intrinsic conductivity are identical to those used in simula-
tions with Bic ¼ 0.

IV. PERCOLATION THRESHOLD AND FINITE-SIZE EFFECTS

The continuum percolation problem in systems of rod-like parti-
cles was a subject of numerous studies, e.g., Refs. 47, 61–64, and 80. In
the present work, we calculate the percolation threshold in order to
verify our numerical model, reveal the effect related to the finite size
of our samples, and describe the conductivity near the percolation
threshold in terms of the reduced density parameter.

In 2D networks of SCs with fixed �Rf , the percolation threshold
can be formulated in terms of the critical density parameter �nSP

that is the minimum value of �nS at which a percolating cluster still
exists in an infinitely large sample, i.e., percolation probability
Pp(�nS) ¼ 1 at �nS . �nSP and Pp(�nS) ¼ 0 at �nS , �nSP. The existence
of a unique critical density parameter �nSP is justified theoretically
based on the cluster expansion method77 and also supported by
numerous numerical simulations, e.g., in Refs. 61 and 62, where
the same critical value corresponding to the onset of percolation,ffiffiffiffiffiffiffiffiffi
π�nSP

p
=2, is found by variation of Lf at constant nS and nS at cons-

tant Lf .
In finite-size samples, the percolation probability Pp(�nS) is a

continuous function of �nS (Fig. 3) and does not exhibit a distinct
threshold behavior.2 Then the percolation threshold can be approx-
imately determined as an expectation value �nSP(L̂S) of �nS, which are
distributed with the cumulative distribution function Pp(�nS),
obtained for samples of a sufficiently large relative size L̂S ¼ LS=L ff

(Fig. 3). The cumulative distribution function Pp(�nS) corresponds
to the probability density function (PDF) fp(�nS) ¼ dPp(�nS)=d�nS, so
that �nSP(L̂S) can be numerically calculated as

�nSP(L̂S) ¼
ð1
0

�nSfp(�nS)d�nS ¼
ð1
0

�nS
dPp
d�nS

(�nS)d�nS

≃
X

(�nS(k) þ �nS(kþ1))
Pp(kþ1) � Pp(k)

2
, (11)

where Pp(k) ¼ Pp(�nS(k)). We found that actual fp(�nS) can be approx-
imated by the Gaussian distribution and, thus, the approximate
value of �nS(L̂S) can be also found from the condition
Pp(�nSP(L̂S)) ¼ 1=2. For example, at �Rf ¼ 0, this condition gives
�nS(16) ¼ 5:494, while Eq. (11) results in �nS(16) ¼ 5:502. Convergence
of �nSP(L̂S) to �nSP at L̂S ! 1 is slow, so that it is not possible to
obtain three decimal digits in �nSP even at L̂S ¼ 64. Our calculations
prove that a more accurate estimation of �nSP at a fixed L̂S can be
obtained with the intersection method.78,79 Indeed, one can see

FIG. 3. Percolation probability Pp vs density parameter �nS found at �Rf ¼ 0 and
various sample sizes L̂S ¼ LS=Lf . The values of �nS(L̂S ) correspond to Pp ¼ 0:5
at a given L̂S.
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that the curves computed for different L̂S intersect each other at
�nS ¼ 5:64 with the error within 0.03% at L̂S � 4. That “intersec-
tion” point at a finite L̂S lies closer to the true percolation threshold
than �nSP(L̂S) for values of L̂S normally accessible in numerical simu-
lations, suggesting that the intersection method provides a compu-
tationally efficient and accurate approach for the determination of
the percolation threshold. In particular, the intersection method is
capable of predicting �nSP with the error less than 0.1% in the simu-
lations conducted for small samples with L̂S � 8, while, e.g., at
�Rf ¼ 0, the difference between �nSP and �nSP(8) ¼ 5:39 is about 4.5%.
Our simulations show that, at �Rf ¼ 0, the percolation threshold
corresponds to �nSP ¼ 5:64 with the error 0.03%. This result is in a
good agreement with previously reported values of 5.71,61,62

5:59+ 0:05,80 and 5:64+ 0:02.81 By applying the intersection
method at �Rf . 0, we found that �nSP ¼ 5:57 at �Rf ¼ 0:001,
�nSP ¼ 5:02 at �Rf ¼ 0:01, �nSP ¼ 4:13 at �Rf ¼ 0:03, and �nSP ¼ 2:50
at �Rf ¼ 0:1.

The value of conductivity naturally depends on the sample
size close the percolation threshold,2 while at �nS � �nSP , the
effect of L̂S on k is defined by an approach used for numerical
calculation of ∇Tx . If LS . 2L ff at Bic ¼ 0, then the distribution
T(x) consists of the central linear part and boundary regions,
where the temperature gradient is not constant (Fig. 4). The
nonlinear distributions T(x) appear in the boundary regions at
x � �LS=2þ L ff or x � LS=2� L ff , where some SCs are directly
linked to the heat baths. As a result, the thermal conductivity
calculated based on Eq. (3), where ∇Tx is replaced by the
imposed gradient ∇TBx ¼ (TB2 � TB1)=LS, strongly depends on
the sample size L̂S even far above the percolation threshold,
e.g., at �nS ¼ 73:7 (the solid curve in the inset of Fig. 4). On the
contrary, utilizing the temperature gradient in the linear part of

the sample,

∇Tx ¼ T(LS=2� L ff )� T(�LS=2þ L ff )

LS � 2L ff
, (12)

one can obtain values of k that are practically independent of
L̂S already at L̂S � 4 (dashed curve in the inset of Fig. 4). We
found that, with the latter approach, the conductivity can be
accurately calculated based on finite-size samples with L̂S ¼ 4 at
�nS . 20 for any �Rf . For smaller �nS, however, the allowable
sample size is limited from below by the need to account for
the effect of large clusters. Thus, in simulations performed at
8 � �nS � 20 we use L̂S ¼ 16. At even smaller �nS, near the per-
colation threshold, the dependence of the conductivity on the
sample size is inevitable and is discussed in Sec. V.

V. COMPUTATIONAL RESULTS FOR INFINITELY LARGE
INTRINSIC CONDUCTIVITY OF FIBERS

The typical patterns of fiber temperatures in random samples
are shown in Fig. 5 for various values of �nS at �Rf ¼ 0 and Bic ¼ 0.
At �nS ¼ 4:42 [Figs. 5(a) and 5(b)], which is below of the percola-
tion threshold (Pp ¼ 0:06 at L̂S ¼ 8), many groups (quasi-clusters)
of fibers that are poorly connected to each other are formed, and
the effect of fluctuations caused by the random structure of a
sample is very pronounced. The shaded area in Fig. 5(a) covers one
of such quasi-clusters, which has only one connection with the rest
of the sample. A significant part of the sample consists of non-per-
colating clusters that do not contribute to thermal transport. At
�nS ¼ 7:37 [Figs. 5(c) and 5(d)], which is slightly above the percola-
tion threshold (Pp ¼ 0:99 at L̂S ¼ 8), the effect of clustering of
fibers into quasi-clusters with almost constant temperatures is still
rather pronounced, although the number of fibers involved into
non-percolating clusters is small.

Close to the percolation threshold, the conductivity �k depends
on the sample size [Fig. 6(a)]. If the sample is sufficiently large, the
value of �k is affected by the sample size only in a small vicinity of
�nSP. At �Rf ¼ 0, the sample-size-independent value of �k can be found
with the error within 2% in simulations with L̂S ¼ 16 for �nS � 8
and in simulations with L̂S ¼ 64 for �nS � 6:5. If conductivity �k is
plotted vs the reduced density parameter �nS � �nSP, it exhibits a uni-
versal scaling behavior.2 With increasing L̂S, the conductivity �k
approaches the dashed-dotted line in Fig. 6(b), which corresponds to
the power law Cp(�nS � �nSP)

t, where the conductivity exponent t pre-
sumably depends only on the dimensionality of the problem. For the
2D percolation problem, it was numerically found to be equal to
1.3.2 We plot the dashed-dotted line in Fig. 6(b) as the best fit for
the tangent (in double logarithmic scale) to the curves for �k found at
L̂S ¼ 64 in the range 2 , �nS � �nSP , 10, where the difference
between these values of �k and corresponding values calculated at
L̂S ¼ 32 is about 1%. This best fit gives Cp ¼ 0:18 and t ¼ 1:33.
One can see that this fit is in a good agreement with numerical
results obtained at L̂S ¼ 128 in the range 0:2 , �nS � �nSP , 0:6.
Further simulation showed that t is independent of �Rf at �Rf � 0:03
with an error of less than 5%. Thus, our simulations do not support
the conclusion made in Ref. 47 on the dependence of the conductiv-
ity exponent on the nanotube aspect ratio.

FIG. 4. Distribution of the average material temperature T along the coordinate
x, obtained at �nS ¼ 73:7, �Rf ¼ 0, rTBxLf ¼ 10, and Bic ¼ 0. This distribution
is used for calculation of the temperature gradient rTx in the central part of the
sample, �LS=2þ Lf , x , LS=2� Lf , based on Eq. (12). The inset shows
the numerical values of conductivity �k vs the sample size L̂S ¼ LS=Lf . The
values of �k calculated based on the imposed gradient rTBx (solid curve)
depend on L̂S even at L̂S � 40, while �k calculated based on rTx (dashed
curve) is practically independent of L̂S at L̂S � 4.
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At �nS � �nSP , e.g., �nS ¼ 73:7 and �nS ¼ 221:1, the fields of fiber
temperatures shown in Figs. 5(e) and 5(f ) qualitatively look like
monotonous distributions of temperature in a bulk material,
although each SC has a constant temperature. In these cases, all

fibers in the sample constitute a single percolating cluster, and
every SC interacts with multiple neighboring SCs. The temperature
of an individual fiber in this case is defined by the position of the
fiber center and is almost independent of the realization of the

FIG. 5. Patterns of SC temperatures
obtained in randomly generated
samples at �Rf ¼ 0 and Bic ¼ 0 for
�nS ¼ 4:42 [(a) and (b)], �nS ¼ 7:37
[(c) and (d)], �nS ¼ 73:7 (e), and
�nS ¼ 221:1 (f ). The individual SCs are
colored according to their temperatures.
In panels (a), (c), (e), and (f ), all fibers
in the samples are shown, while in
panels (b) and (d), only SCs that
belong to percolating clusters are
depicted. The shaded area in panel (a)
surrounds a part of a percolating
cluster, where all SCs have the same
temperature, and, therefore, do not con-
tribute to the thermal transport. Panels
(e) and (f ) share the color scale shown
in panel (f ). Other panels share the
color scale shown in panel (b).
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random structure of the sample. This fact enables the development
of a theoretical approach that predicts the conductivity of fibrous
materials at high values of the density parameter (Secs. VI A
and VIII A).

The results of numerical calculations of �k are shown by
symbols and solid curves in Fig. 7 in a broad range of �nS. These
values of �k are proved to be independent of L̂S at �nS � 8 with an
error within 2%. One can see that, for large �nS, dependences �k(�nS)
at �Rf ¼ const approach asymptotes that are shown by the dashed,
dashed-dotted, and dashed-double-dotted lines. These asymptotes
correspond to the power law �k � n2S. With decreasing �nS, �k(�nS)
deviates from the asymptotes and drops down to zero near the per-
colation threshold much faster than �k � n2S: This behavior can
potentially explain the variability of the values of the conductivity
exponent obtained in earlier studies performed in narrow ranges of
�nS. In particular, one can hypothesize that the power law k/ L2:16f

found numerically in Ref. 52 is likely to reflect the fact that the
authors performed simulations in a range of �nS intermediate
between the percolation threshold and dense material, where the
scaling law �k/ �n2S corresponding to the asymptotes in Fig. 7 is not
reached yet. An approximation for the thermal conductivity of
fibrous materials adopted for the case when �nS � �nSP and �k � �n2S
is further referred to in the present paper as “high-density approxi-
mation.” The data in Fig. 7 show that the high-density approxima-
tion is valid at �Rf � 0:1 with errors of 20% at �nS . 30, 6% at
�nS . 60, and 3% at �nS . 102.

VI. CONDUCTIVITY EQUATION FOR INFINITELY LARGE
INTRINSIC CONDUCTIVITY OF FIBERS

A. Theoretical solution in the high-density
approximation

Though in theoretical analysis one can assume that the mate-
rial sample is infinite, we prefer to start the derivation of an equa-
tion for the conductivity by considering a sample that has a finite
size Ly in the y-direction. This approach allows us to establish a
transparent relationship between the theoretical predictions and
numerical results obtained for finite-size samples.

The ensemble averaging of Eq. (6) gives the average heat flux
in the form

hQxi ¼ � σc

XN
i¼1

χi(x)
XN
j¼1

δij(þ)(x)(Tj � Ti)

* +
¼ �σchNJ(þ)ihΔT(þ)i, (13)

where hNJ(þ)i is the average total number of junctions with
χi(x) ¼ 1 and δij(þ)(x) ¼ 1, i.e., junctions that are located on the
right of the plane x ¼ const on fibers that cross this plane, and
hΔT(þ)i is the average temperature difference in such junctions,

hNJ(þ)i ¼
XN
i¼1

χi(x)
XN
j¼1

δij(þ)(x)

* +
, (14)

FIG. 7. Thermal conductivity �k vs density parameter �nS calculated at Bic ¼ 0
for �Rf ¼ 0 (red squares), �Rf ¼ 0:01 (green gradients), and �Rf ¼ 0:1 (blue dia-
monds). Symbols and solid curves show the results of numerical calculations;
other curves are the predictions of Eq. (27). The inset shows values of �k in an
intermediate range of �nS. The data are partially taken from Ref. 56.

FIG. 6. Thermal conductivity �k vs
density parameter �nS (a) and reduced
density parameter �nS � �nSP (b) at
�Rf ¼ 0 and Bic ¼ 0 calculated for
various sample sizes L̂S ¼ LS=Lf . In
panel (b), the dashed-dotted curve rep-
resents a power fit of calculated values
of �k at L̂S ¼ 64 in the range
2 � �nS � �nSP � 10. The values of �k
obtained at L̂S ¼ 128 are well
described by this power fit.
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hΔT(þ)i ¼ 1
hNJ(þ)i

XN
i¼1

χi(x)
XN
j¼1

δij(þ)(x)(Tj � Ti)

* +
: (15)

The value of hNJ(þ)i can be represented in the form
hNJ(þ)i ¼ hNxihNJi=2, where hNxi is the average number of SCs
crossing any plane x ¼ const within the sample and hNJi is the
average number of junctions for an individual fiber. Equation (13)
then reduces to

hQxi ¼ �σchNxi hNJi
2

hΔT(þ)i: (16)

By combining Eq. (16) with the Fourier law given by Eq. (3), we
express the conductivity in the following form:

k ¼ σc
Lf
Ly

hNxi hNJi
2

hΔT(þ)i
∇TxLf

¼ σc
Lf
Ly

hNxi hNJi
2

hΔ�T (þ)i, (17)

where hΔ�T (þ)i ¼ hΔT(þ)i=(∇TxLf ).
The values of hNxi and hNJi can be found as

ensemble-average values of corresponding variables assuming
homogeneous distribution of SC centers and homogeneous distri-
bution of fiber orientations within the plane Oxy. In particular,
hNxi can be represented as hNxi ¼ hNiPx , where hNi ¼ nSLxLy is
the average total number of SCs in the sample and Px is the proba-
bility of intersection of any given SC with an axis x ¼ const within
the sample, e.g., with x ¼ 0. By assuming random distributions of
the centers of SCs along the axis Ox and the angles θ1 between the
axes of SCs and the axis Ox, Px can be expressed as

Px ¼ 1
Lx

ð2π
0

(Lf jcos θ1j þ 2Rf )
dθ1
2π

¼ 2
π

Lf
Lx

(1þ π�Rf ), (18)

and, hence,

Lf
Ly

hNxi ¼ 2
π
�nS(1þ π�Rf ): (19)

The average number of junctions per fiber, hNJi, can be represented
in the form

hNJi ¼ hNi2PJ
hNi ¼ hNiPJ , (20)

where PJ is the probability of existence of a junction between any
pair of SCs.

The derivation of PJ can be based on the concept of the
excluded volume, or, in the case of 2D samples, excluded area, Aex,
which was originally introduced by Onsager82 to describe the isotro-
pic–nematic phase transition in systems of thin rod-like particles.
This approach was later extended to study the continuous percolation
in fiber systems.63,64,77 For a given angle ϑ between axes of a pair of
SCs, Aex(ϑ) is the area around a SC where the center of another SC
must be located if these SCs intersect each other. The derivation of
the excluded area for SCs can be found in the literature.63 Therefore,
all necessary terms are only briefly introduced below.

There are four types of junctions between two SCs on the
plane Oxy (Fig. 8). The criterion for the type identification is based

FIG. 8. Different types of junctions of
soft-core SCs on the plane Oxy. The
junction type is determined by the posi-
tion of the closest points that are
located on SCs’ axes within their cylin-
drical (rectangular in 2D) parts. For
junctions of type 1 shown in panel (a),
the closest points coincide with each
other. For junctions of types 2 and 3
shown in panels (b) and (c), one of the
closest points lies at the end of the
cylindrical part of a SC. For junctions
of type 4 shown in panel (d), both of
the closest points are located at the
ends of the cylindrical parts of SCs.
The notation of geometrical parameters
corresponds to the notation used in
Appendixes A–C. In panels (b)–(d),
only a special case of r ¼ 2Rf is
shown for the sake of clarity. The defi-
nitions of all geometrical parameters in
these panels, however, are valid in the
general case of arbitrary r, as
explained in the caption of Fig. 2.
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on the positions of the closest points J1 and J2 of SCs 1 and 2,
which are located on the SC axis within the rectangular parts of the
SCs. For junctions of type 1, Fig. 8(a), both the closest points lie
within the rectangular parts and coincide with each other. For
these junctions, the excluded area is the area of the parallelogram
ABCD in Fig. 9 and is equal to Aex(1)(ϑ) ¼ L2f jsin ϑj, where ϑ is the
angle between the SC axes. Assuming a homogeneous distribution
of ϑ, the excluded area averaged over all possible orientations of
SCs in this case is equal to Aex(1) ¼ hAex(1)(ϑ)i ¼ (2=π)L2f . For
junctions of type 2 [Fig. 8(b)], the closest point J1 is located inside
the rectangular part of one SC, while the point J2 coincides with
the center of the semicircular capping of another SC. The excluded
area for these junctions, Aex(2) ¼ 4Lf Rf , is equal to the sum of areas
of rectangles ADLE and BHIC in Fig. 9. In a junction of type 3
[Fig. 8(c)], SCs 1 and 2 are swapped as compared with a junction
of type 2, and the excluded area is equal to the sum of areas of rect-
angles CJKD and AFGB in Fig. 9, i.e., Aex(3) ¼ 4Lf Rf . For junctions
of type 4 [Fig. 8(d)], the closest distance is realized between the
centers of capping semicircles of both SCs, so that the excluded
area in this case is the area of four circular segments in Fig. 9,
Aex(4) ¼ 4πR2

f . The total excluded area is then equal to

Aex ¼ Aex(1) þ Aex(2) þ Aex(3) þ Aex(4)

¼ 2
π
L2f (1þ 4π�Rf þ 2π2�R2

f ): (21)

By assuming that the positions of the SC centers are homoge-
neously distributed within the sample, one can find that

PJ ¼ Aex=L2S and

hNJi ¼ 2
π
�nS(1þ 4π�Rf þ 2π2�R2

f ): (22)

The parameters hNxi and hNJi are purely geometrical parameters,
and Eqs. (19) and (22) do not rely on any assumptions except the
assumption of homogeneous distributions of positions and orienta-
tions of SCs.

The temperature difference hΔT(þ)i depends, in general, on
fluctuations caused by the random structure of a sample. The role
of these fluctuations increases in the vicinity of the percolation
threshold. In the opposite limit of the high-density approximation,
one can assume that all SCs are well-interconnected with each
other, and the temperature of a SC depends only on the position of
the SC center within the sample. Based on this assumption, in the
limit of �nS ! 1, the temperature of any SC can be calculated as
the average material temperature at the point corresponding to the
SC center,

Ti ¼ T0 þ ∇TxxCi : (23)

By inserting Eq. (23) into the right-hand side of Eq. (15), one can
find that

hΔT(þ)i01 ¼ ∇TxLf
hNJ(þ)i

XN
i¼1

χi(x)
XN
j¼1

δij(þ)(x)
xCj � xCi

Lf

* +
¼ ∇TxLf hΔ�x(þ)i, (24)

where hΔ�x(þ)i is the average dimensionless inter-center distance
along the axis Ox, and the superscript “0” and subscript “1” indi-
cate that Eq. (24) is obtained for Bic ¼ 0 and �nS ! 1. The value of
hΔ�x(þ)i is a pure geometrical parameter, like hNxi and hNJi. The
approach used for calculation of hΔ�x(þ)i is briefly described in
Appendix A, while the detailed derivation of an equation for this
quantity is provided in Sec. SI in the supplementary material,
where hΔ�x(þ)i is expressed in the form of Eq. (S24). By inserting
Eq. (S24) in the supplementary material into Eq. (24), one can
write

hΔ�T(þ)i01 ¼ hΔ�x(þ)i

¼ π

24

1þ 8π�Rf þ (72þ 6π2)�R2
f þ 96π�R3

f þ 24π2�R4
f

(1þ π�Rf )(1þ 4π�Rf þ 2π2�R2
f )

:

(25)

Within the adopted model of thermal transport, where the
heat is transferred among the fiber-like particles through point-like
junctions, Eq. (25) is accurate for arbitrary �Rf , e.g., for disks with
Lf ¼ 0, it gives hΔT(þ)i01 ¼ ∇TxRf =2. For high-aspect-ratio SCs at
�Rf � 0:03, the contribution of terms with the third and fourth
powers of �Rf in the numerator and denominator in Eq. (25) is less
than 0.1% and, for practical purposes, Eq. (25) can be

FIG. 9. Schematic representation of the excluded area EFGHIJKL for two SCs
with the angle ϑ between their axes. The parts of the excluded area shaded by
different colors correspond to the different types of junctions shown in individual
panels of Fig. 8. The case of Fig. 8(a) is realized if the center of the second SC
is in the area ABCD, the case of Fig. 8(b) corresponds to the areas BHIC and
ADLE, the case of Fig. 8(c) corresponds to the areas AFGB and CJKD, and the
case of Fig. 8(d) corresponds to the areas AEF, BGH, CIJ, and DKL. The idea
of this figure is taken from Ref. 63.
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approximated in this range of �Rf as

hΔ�T(þ)i01 � π

24

1þ 8π�Rf þ (72þ 6π2)�R2
f

1þ 5π�Rf þ 6π2�R2
f

¼ π

24
1þ �Rf

3π þ 72 �Rf

1þ 5π�Rf þ 6π2�R2
f

 !
: (26)

In order to establish the range of applicability of the assump-
tion given by Eq. (23) and to find the range of �nS where hΔ�T (þ)i
can be described by Eq. (25), the values of the temperature differ-
ence were calculated numerically based on Eq. (15). The results of
these calculations, shown by symbols in Fig. 10, demonstrate that
hΔ�T (þ)i quickly approaches the limiting values predicted by
Eq. (25) for �nS ! 1 (horizontal lines in Fig. 10).83 For example, the
difference between the prediction of Eq. (25) and numerical values
of hΔ�T (þ)i is smaller than 0.5% at �nS � 103, smaller than 3% at
�nS � 102, and smaller than 20% at �nS � 30. Thus, the assumption
given by Eq. (23) provides a reasonably accurate description of the
temperature difference at junctions when �nS � 30� 100. Along with
the data shown in Fig. 10, additional simulations were performed for
�Rf ¼ 1, and numerical data were found to be in an excellent agree-
ment with Eq. (25) in the limit of large �nS.

With decreasing �nS, hΔ�T (þ)i first gradually decreases at mod-
erate �nS and then drops sharply close to the percolation threshold.
The average temperature difference is varied continuously around
the percolation threshold, with nonzero values predicted even
below �nSP. This artifact is caused by the finite sample sizes L̂S used
in the calculations. With an increase in the sample size, the plots of
hΔ�T (þ)i become steeper in a vicinity of the percolation threshold,
while the effect of the sample size appears to become negligible at
�nS � �nSP . For example, the difference between hΔ�T (þ)i obtained at
L̂S ¼ 32 and L̂S ¼ 4 becomes less than 1% for �nS � 20.

By inserting Eqs. (19), (23), and (25) into Eq. (17), one
can find

k01 ¼ σcC
0
0(�Rf )�n

2
S ¼ σc

C0
0(�Rf )

(2þ π�Rf )
2 w

2
S

Lf
Rf

� �2

, (27)

where wS ¼ nS(2Lf Rf þ πR2
f ) ¼ �nS�Rf (2þ π�Rf ) is the fiber surface

coverage and

C0
0(�Rf ) ¼ 1

12π
(1þ 8π�Rf þ (72þ 6π2)�R2

f þ 96π�R3
f þ 24π2�R4

f ):

(28)

The values of the conductivity predicted by Eq. (27) are shown by
the lines in Fig. 7. One can see that Eq. (27) accurately describes
asymptotic behavior of the thermal conductivity in high-density
materials. The quadratic dependence of k01 on �nS, or on both wS
and Lf at Rf ¼ const � Lf , in the high-density approximation is
a result of a combination of the following scaling relationships:
hNxiLy / �nS=Lf , hNJi/ �nS , and hΔT(þ)i/ Lf . This quadratic
scaling law, first established in Ref. 53 and then confirmed in
Ref. 56, is quite different from the scaling law for fibrous materials
with negligibly small interfiber contact resistance, where the con-
ductivity is proportional to wS and is independent of Lf , e.g., Ref. 3
and Eq. (68) in Sec. VIII A. Equation (27) can be reformulated to
express k as a function of the material surface density ρS.
For high-aspect-ratio fibers, when the mass of caps can be
neglected, ρS ¼ ρf Lf nS, where the ρf is the linear density of the
fiber material (mass per unit length of the fiber). Then,
k01 ¼ σcC0

0(�Rf )(ρSLf )
2=ρ2f , i.e., k01 scales quadratically with the

material density ρS. At �Rf ! 0, C0
0(�Rf ) ! 1=(12π) and the conduc-

tivity of slender rods is equal to

k01 ¼ σc

(nSL2f )
2

12π
: (29)

With increasing �Rf , the contribution of terms proportional to
�Rf and �R2

f in Eq. (28) rapidly increases. For example, at
�Rf ¼ 0:01, the term proportional to �Rf increases the conductivity
by ∼24% with respect to the first radius-independent term, while
the term proportional to �R2

f gives an additional rise by ∼4%. The
terms proportional to �R3

f and �R4
f are much smaller and can be

neglected at �Rf , 0:03. For disk particles with Lf ¼ 0, Eq. (27)
reduces to

k01 ¼ σc2π(nSR
2
f )

2
: (30)

B. Role of fluctuations of fiber temperature. Correction
of the conductivity equation for semidilute networks

In this section, we derive a semiempirical correction to
Eq. (27), which is capable of predicting the thermal conductivity of
semidilute fiber networks with moderate, �nS � 10, density parame-
ters. Since Eqs. (19) and (22) are valid for any �nS, the deviation of k
from k01 at �nS approaching the percolation threshold (Fig. 7) can

FIG. 10. Averaged temperature difference hΔ�T (þ)i vs density parameter �nS calcu-
lated at Bic ¼ 0 for �Rf ¼ 0 (red squares), �Rf ¼ 0:01 (green gradients), and
�Rf ¼ 0:1 (blue diamonds). The symbols and solid curves correspond to the numer-
ical values. The horizontal lines show the values calculated based on Eq. (25).
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only be attributed to the deviation of hΔ�T (þ)i from the values given
by Eq. (25). This deviation is illustrated in Fig. 10 and is a result of
an increasing effect of fluctuations and correlations of SC tempera-
tures with decreasing �nS, when the network gradually disintegrates
into quasi-clusters. Temperatures of SCs in these quasi-clusters are
well-correlated. Close to the percolation threshold, the network
breaks up into poorly connected quasi-clusters, with individual
fibers in each quasi-cluster having almost the same temperature, so
that hΔ�T(þ)i approaches zero.

The analysis of distributions of temperature differences at
junctions computed for different �nS supports this explanation. At
�nS ¼ 1000, the PDF of Δ�T(þ), where ΔT(þ) ¼ Tj � Ti is the temper-
ature difference at a junction between a pair of SCs with χi(0) ¼ 1
and δij(þ)(0) ¼ 1, practically coincides with the PDF of Δ�x(þ),
where Δx(þ) ¼ xCj � xCi is the inter-center distance in a junction
between a pair of SCs with χi(0) ¼ 1 and δij(þ)(0) ¼ 1 (Fig. 11).
With decreasing �nS, the maximum of the PDF of Δ�T (þ) shifts
toward Δ�T (þ) ¼ 0 and, when �nS gets smaller than some critical
value, the PDF becomes nonsmooth around Δ�T (þ) ¼ 0 [curves for
�nS ¼ 10 and �nS ¼ 13 in Fig. 11(a)]. The spike in the PDF at
Δ�T (þ) ¼ 0 indicates the presence of a finite fraction of junctions
with zero temperature difference. To estimate the role of correlation
of SC temperatures due to clustering, we additionally introduce a
quantity δTi ¼ Ti � (T0 þ ∇TxxCi ), which characterizes the devia-
tion of the real temperature Ti of SC i from the approximate value
given by Eq. (23). Pearson’s correlation coefficient ρ(δTi, δTj)
found numerically for all pairs of SCs that are linked by a junction
is close to 1 near the percolation threshold and decreases with an
increase in �nS (Fig. 12).

The deviation of the real dimensionless temperature
difference at a junction, Δ�T (þ), from its value in the high-density
approximation, Δ�T0

(þ)1 ¼ (xCj � xCi )=Lf , can be characterized by
the quantity

δΔ�T (þ) ¼ Δ�T(þ) � Δ�T0
(þ)1: (31)

The analysis of a typical numerical PDFs of δΔ�T(þ) [Fig. 11(b)]
indicates that the root mean square deviation (RMSD) of δΔ�T(þ)

decreases with increasing �nS and the PDFs approach the Dirac
δ-function at �nS ! 1. With a decrease in �nS, distributions of
δΔ�T (þ) become broader, while the mean value changes from zero

FIG. 12. Pearson’s correlation coefficient ρ(δ�T1, δ�T2) (red squares), expecta-
tion value hδΔ�T (þ)i (green triangles), and root mean square deviation
σ(δΔ�T (þ)) (blue gradients) vs density parameter �nS at �Rf ¼ 0 and Bic ¼ 0. All
values are calculated for SCs that intersect the line x ¼ 0 in samples with
L̂S ¼ 16. The symbols represent numerical values. The dashed curves are
power-law fits to the numerical values.

FIG. 11. PDFs of Δ�T (þ) (a) and δΔ�T (þ) ¼ Δ�T (þ) � ΔT0
(þ)1 (b) for various density parameters �nS at �Rf ¼ 0 and Bic ¼ 0. In panel (a), the dashed-dotted curve corre-

sponds to the PDF of ΔT0
(þ)1 ¼ Δ�x(þ) , which is independent of �nS. This dashed-dotted curve visually coincides with the PDF of Δ�T (þ) at �nS ¼ 1000. In panel (b), the

dashed and dashed-dotted curves represent the Gaussian PDF (GPDF) plotted for the same values of the expectation and root mean square deviation as the correspond-
ing PDFs found numerically. In panel (b), the sharp peak at δΔ�T (þ) ¼ 0 of the PDF for �nS ¼ 6 corresponds to junctions between fibers belonging to non-percolating clus-
ters, where the temperature difference is zero. For such junctions, δΔ�T (þ) is not calculated based on the definition given by Eq. (31) but is assumed to be equal to zero.
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to �hΔ�T(þ)i01. The comparison of the numerical PDFs with corre-
sponding Gaussian distributions, plotted for the same mean value
and RMSD and shown by the dashed and dashed-dotted curves in
Fig. 11(b), shows that the real PDFs exhibit substantial deviations
from the Gaussian distributions for both small and large �nS. The
mean value, hδΔ�T (þ)i, and RMSD, σ(δΔ�T (þ)), both approach zero
at �nS ! 1 as � 1=�nS and � 1=

ffiffiffiffiffi
�nS

p
, respectively (Fig. 12). This

observation suggests that hδΔ�T (þ)i can be represented as a series
expansion in powers of a small parameter 1=�nS near hδΔ�T (þ)i ¼ 0,

�hδΔ�T (þ)i0 ¼
~C
0
1(�Rf )

�nS
þ

~C
0
2(�Rf )

�n2S
þ 	 	 	 , (32)

where the superscript “0” indicates that this equation is applied at
Bic ¼ 0. If one retains only the first term in this series, i.e.,

hδΔ�T(þ)i0 ¼ �
~C
0
1(�Rf )

�nS
, (33)

then the prefactor ~C
0
1(�Rf ) can be found by fitting Eq. (33) to

numerical data by the least-squares method. Our calculations
show that Eq. (33) can be fitted to numerical data in the range
�nS . �nSmax ¼ 8 with ~C

0
1(0) ¼ 0:69. As �nS increases above �nSmax,

however, the value of ~C
0
1(0) that ensures a good data fit by Eq. (33)

approaches 2=π. This behavior is expected, because the contribu-
tion of the second and higher order terms in the power series
expansion given by Eq. (32) becomes smaller for larger �nS. After
inserting Eq. (33) into Eq. (31) and performing ensemble averag-
ing, one can find that

hΔ�T(þ)i0 ¼ hΔ�T (þ)i01 þ hδΔ�T (þ)i0 ¼ hΔ�x(þ)i �
~C
0
1(�Rf )
�nS

: (34)

The predictions of Eq. (34) for ~C
0
1(0) ¼ 0:69 and ~C

0
1(0) ¼ 2=π

are shown in Figs. 13(a) and 13(b) by solid and dashed curves,
respectively. The former choice of ~C

0
1(0) provides better approxi-

mation at small �nS , 20 and inferior approximation at 20 , �nS , 102

as compared to the latter value of ~C
0
1(0). On the other hand, the

latter choice provides an excellent approximation for �nS . 20
with the deviation from the numerical results staying below 0.6%.
Therefore, the value of ~C

0
1(0) ¼ 2=π is adopted here for further

use. Analysis of the numerical data for various �Rf shows that
~C
0
1(�Rf ) can be approximated by the following equation:

~C
0
1(�Rf ) ¼ 2

π

1
1þ π�Rf

: (35)

FIG. 13. Average temperature differ-
ence at junctions hΔ�T (þ)i [(a) and
(b)] and thermal conductivity �k (c) vs
density parameter �nS at Bic ¼ 0.
The symbols represent values calcu-
lated numerically at �Rf ¼ 0 (red
squares), �Rf ¼ 0:01 (green gradi-
ents), �Rf ¼ 0:03 (magenta trian-
gles), and �Rf ¼ 0:1 (blue diamonds).
In panels (a) and (b), the solid and
dashed curves are obtained with
Eq. (34) at ~C1(0) ¼ 2=π � 0:64 and
~C1(0) ¼ 0:69, while the dashed-
dotted curves are obtained with
Eq. (38) at ~C1(0) ¼ 2=π. In panel (c),
the solid curves are obtained with
Eq. (36). The inset in panel (c)
shows values of �k in the intermediate
range of �nS. It reveals that Eq. (36)
provides an excellent approximation
of numerical values at �nS � 5.
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After inserting Eqs. (19), (22), and (34) into Eq. (17), the
latter reduces to

k0 ¼ σcC
0
0(�Rf )�n

2
S � σcC

0
1(�Rf )�nS ¼ k01 � σcC

0
1(�Rf )�nS, (36)

where the prefactor C0
1(�Rf ) is equal to

C0
1(�Rf ) ¼ Lf

Ly

hNxihNJi
2�n2S

~C
0
1(�Rf ) ¼ 4

π3
(1þ 4π�Rf þ 2π2�R2

f ): (37)

The comparison of values of �k calculated with Eq. (36) [solid
curved in Fig. 13(c)] with numerical values [symbols in Fig. 13(c)],
demonstrates that the error of Eq. (36) is less than 0.5% at �nS � 16,
4% at �nS � 13, and 22% at �nS � 8. Thus, the second and following
terms in the power series expansion given by Eq. (32) make a
substantial contribution to �k only close to the percolation thresh-
old. Similar first-order corrections for finite �nS were proposed in
Refs. 53 and 57.

Further analysis of the simulation results showed that
~C
0
2(�Rf ) � ~C

0
1(�Rf )=2. This observation provides a hint that the series

in Eq. (32) can be approximated by the Tailor expansion of the
exponential function and, therefore, Eq. (20) can be replaced by
hδΔ�T(þ)i0 ¼ 1� exp(~C

0
1(�Rf )=�nS), yielding

hΔ�T (þ)i0 ¼ hΔ�x(þ)i þ 1� exp(~C
0
1(�Rf )=�nS): (38)

The predictions based on this equation are shown in Fig. 13(b)
by dashed-dotted curves. One can see that this equation gives the
same results as Eq. (34) at �nS . 15, while for smaller density param-
eters, Eq. (38) provides about twice smaller error than Eq. (34).

VII. COMPUTATIONAL RESULTS FOR FIBER NETWORKS
WITH FINITE INTRINSIC CONDUCTIVITY OF FIBERS

In the case of finite intrinsic conductivity of fibers, the pat-
terns of the SC temperature become more homogeneous in the
direction perpendicular to the direction of the heat flux. For
example, one can compare the temperature pattern obtained at
Bic ¼ 10 and shown in Fig. 14 with the corresponding pattern
obtained at Bic ¼ 0 and shown in Fig. 5(e). The main difference
between these patterns is the constancy of temperature of every SC
in the latter case, while some nonzero temperature gradient is
maintained along SCs in the former one.

The typical distributions of temperature along SCs in a dense
network of slender rods as functions of the coordinate x are shown
by solid curves in Fig. 15. As one can see, at sufficiently large �nS
and Bic, dTi=dx is approximately constant along SCs. Based on this
fact, an approximate equation for �k at arbitrary Bic and �Rf ¼ 0 was
obtained in Ref. 59. In a generalized form, accounting for finite
values of �nS, such an equation is derived in Sec. SIV in the
supplementary material [Eq. (S70)]. Visually, the distributions of
temperature along SCs are rather smooth contrary to an expecta-
tion that they should be piecewise-linear with jumps in the slope in
the points of interfiber junctions. This is explained by a relatively
high value of �nS in the network shown in Fig. 15, where the
average number of junctions hNJi is as high as 93.9. At much

smaller values of �nS, the distributions of temperature along individ-
ual SCs retain a pronounced piecewise-linear character.

As can be seen from Fig. 16(a), for any density, �k decreases
from its maximum at Bic ¼ 0 with decreasing intrinsic conductiv-
ity of fibers. At a finite Bic, the dependence �k(�nS) for slender
rods at �nS � 1 demonstrates a different asymptotic behavior as
compared to the case of Bic ¼ 0: �k/ �nS at Bic . 0, while the
scaling law �k/ �n2S holds at Bic ¼ 0. The rate the actual function
�k(�nS) approaches its asymptote �k/ �nS decreases with decreasing
Biot number. This result suggests a possible explanation of the
scaling law k/ L1:46f for the electrical conductivity of CNT net-
works found experimentally.51 The value of the exponent, which
is intermediate between 1 and 2, may indicate that the electrical

FIG. 15. The distributions of temperature along four representative fibers (solid
curves) in a sample with �nS ¼ 147:4, �Rf ¼ 0, and Bic ¼ 10. The distributions
are shown as functions of the sample coordinate x (Fig. 14). The slope of the
dashed lines is equal to the average gradient rT fx calculated with Eq. (54).

FIG. 14. Pattern of SC temperatures in a sample generated at �nS ¼ 73:7,
�Rf ¼ 0, and Bic ¼ 10. The individual SCs are colored according to their local
temperature that is measured in arbitrary units. The pattern of SC temperatures
obtained for the same �nS and �Rf but with Bic ¼ 0 is shown in Fig. 5(e).
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analog of the Biot number is about 1, when the dependence �k(�nS)
at moderate �nS can be approximated neither by the scaling law
�k/ �nS nor �k/ �n2S .

In order to make the asymptotic behavior of the thermal con-
ductivity at finite Bic more apparent, one can introduce the dimen-
sionless conductivity �k ¼ k=σ f ¼ �k� Bic by using the intrinsic
fiber conductance σ f as a more suitable scale for conductivity at
Bic � 1 than σc. As can be seen from Fig. 16(b), for finite Bic, the
function �k(�nS) approaches a single asymptote at �nS ! 1 shown by
the dashed-double-dotted line. This line corresponds to the scaling
law �k/ �nS in the limiting case of Bic ! 1, when the effect of
interfiber contact resistance is negligible.

In spite of such asymptotic behavior, for networks of slender
rods at very large but finite �nS, the scaling of conductivity with �nS
also depends on Bic. At a sufficiently small Bic, e.g., Bic ¼ 0:01
(curve 2 in Fig. 16), the thermal conductivity is better approxi-
mated by the scaling law �k/ �n2S established for Bic ¼ 0 than by the
linear dependence for finite Bic even when �nS is as large as 103.
This observation shows that the consideration of the limiting case
of infinitely large intrinsic conductivity of SCs can yield results
applicable to real systems with finite �nS and Bic.

The thermal conductivity of slender rods as a function of the
Biot number is shown in Fig. 17. This plot illustrates the expected
variation of �k between two limiting cases corresponding to Bic ! 0
and Bic ! 1. At Bic ! 0, the values of �k at fixed �nS approach hor-
izontal asymptotes corresponding to the values of k in the limit of
infinitely large intrinsic conductivity of fibers. At Bic ! 1, �k
decreases linearly with Bic, since in this case the reduced conductiv-
ity in the form �k ¼ �k� Bic must approach the horizontal asymp-
totes corresponding to the values of k in the limit of infinitely large
contact conductance. The obtained results show, however, that the
range of Bic where this transition occurs is not constant but
depends on �nS. With increasing �nS, this transitional range of Bic
moves toward smaller Biot numbers.

At relatively small �Rf , e.g., at �Rf ¼ 0:01, the conductivity
curves in the range �nS � 103 are qualitatively similar to those
for slender rods (Fig. 18). With further increase in �Rf , the
behavior of �k as a function of �nS becomes qualitatively different
from the case �Rf ¼ 0 (Fig. 19). The quadratic scaling law for
conductivity, �k/ �n2S at large �nS, holds at arbitrary Bic, although
for semidilute networks (�nS ¼ 10� 102), an increase in Bic can
significantly decrease �k. For example, at �Rf ¼ 0:1 and �nS ¼ 10,
�k drops by more than two orders of magnitude when
Bic increases from 1 to 103. At a constant �Rf and �nS ! 1,

FIG. 16. Dimensionless thermal conductivity in the form of �k ¼ k=σc (a) and �k ¼ k=σ f ¼ �k � Bic (b) vs density parameter �nS for slender rods (�Rf ¼ 0) at Bic ¼ 0 (red
squares and curve 1), Bic ¼ 0:01 (green triangles and curve 2), Bic ¼ 0:1 (blue gradients and curves 3), Bic ¼ 1 (magenta diamonds and curves 4), and Bic ¼ 10 (cyan
circles and curves 5). The symbols represent numerical values. The dashed curves are calculated with Eq. (71). In panel (a), the dashed-dotted curve is obtained with
Eq. (29) that describes conductivity at Bic ¼ 0. In panel (b), the dashed-double-dotted curve is obtained with Eq. (68b) that describes conductivity at Bic ! 1.

FIG. 17. Dimensionless thermal conductivity �k ¼ k=σc vs Biot number Bic for
slender rods (�Rf ¼ 0) at �nS ¼ 10 (red squares), �nS ¼ 30 (green triangles),
�nS ¼ 100 (blue gradients), �nS ¼ 300 (cyan diamonds), and �nS ¼ 600
(magenta circles). The symbols represent values calculated numerically, while
the curves are drawn only to guide the eye.
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the conductivity approaches an asymptote that does not
depend on Bic.

The results of the numerical calculations discussed above illus-
trate a rather complex behavior of �k at finite �nS and Bic. At �Rf ¼ 0,
it is characterized by the transition between two limiting cases of
Bic ¼ 0 and Bic ! 1 that imply quadratic and linear dependences
of �k on �nS. At finite �Rf , the asymptotic behavior remains quadratic
for dense networks at an arbitrary Bic, but the dependence of �k on
�nS for semidilute networks become more complicated at finite Bic
as compared to the case of Bic ¼ 0. In dense networks composed
of SCs with finite �Rf , the effect of contact resistance does not
vanish even in the limit of infinitely large Bic.

VIII. THEORETICAL EQUATION FOR CONDUCTIVITY AT
FINITE INTRINSIC CONDUCTIVITY OF FIBERS

In this section, we approach the challenging problem of
theoretical description of the thermal conductivity for fiber
systems composed of finite-aspect-ratio SCs at finite Bic. For this
purpose, we generalize the approach that was used in Sec. VI for
Bic ¼ 0. At finite Bic, Eq. (17) for conductivity, as well as
Eqs. (19) and (22), remain valid, but since the temperature varies
along the SC length, the distribution of temperature along a fiber
should be determined first in order to find new hΔ�T (þ)i. In the
high-density approximation, this problem is solved in Sec. VIII A.
Next, in Sec. VIII B, we find a correction to the equation derived
in Sec. VIII A, which enables calculation of the conductivity for
semidilute networks.

A. Theoretical solution for temperature distribution
along a fiber and conductivity equation for dense
networks

To obtain an equation for the distribution of the average SC
temperature, one can use Eq. (8) applied to any SC i, e.g., SC 1. If
the angle θ1 between SC 1 and the axis Ox, as well as the position
of the SC center xC1 , are fixed, then, from the symmetry consider-
ation, the distribution of the averaged SC temperature along the
coordinate x can be represented as

T f ,θ1 (x1) ¼ T(xC1 )þ τθ1 (x1 � xC1 ), (39)

where �(Lf =2) cos θ1 , x1 � xC1 , (Lf =2) cos θ1 (for simplicity,
only the case of cos θ1 � 0 is considered here; the obtained solu-
tion, however, is valid for an arbitrary θ1); the temperature at the
SC center, T(xC1 ), is given by Eq. (23); and τθ1 (x) is some odd
function, i.e., τθ1 (�x) ¼ �τθ1 (x). Using a dimensionless variable
�η ¼ (x1 � xC1 )=Lf and a function �τθ1 (�η) ¼ τθ1 (Lf �η)=(∇TxLf ), one
can rewrite Eq. (39) as

Tf ,θ1 (x1) ¼ T(xC1 )þ ∇TxLf�τθ1
x1 � xC1

Lf

� �
: (40)

A heat transfer equation with respect to Tf ,θ1 (x) can be
obtained from Eq. (8) after its averaging over all possible positions
and orientations of other SCs interacting with SC 1 within
0 , l1 , Lf , where only junctions of types 1 and 2 in Fig. 8 con-
tribute to the right-hand side of Eq. (8). The equation with respect
to T f ,θ1 (x1) can then be written in the form

d2Tf ,θ1

dx21
¼ � 1

cos2 θ1

σ

kf Af

hNJi(1,2)
Lf

hΔTθ1i(1,2), (41)

where hNJi(1,2)=Lf is the total number of junctions of types 1 and 2
per unit length of a SC,

hNJi(1,2) ¼ hNJiAex(1) þ Aex(2)

Aex
¼ �nS

2
π
þ 4�Rf

� �
, (42)

and hΔTθ1i(1,2) is the average temperature difference in all such
junctions. The general approach to evaluation of hΔTθ1i(1,2) is
described in Appendix B, while the detailed derivation of this
quantity is provided in Sec. SII in the supplementary material. The
result, given by Eqs. (B3) and (S40) in the supplementary material,
is as follows:

hΔTθ1i(1,2) ¼ ∇Tx(x1 � xC1 )� τθ1 (x1 � xC1 ) : (43)

By inserting Eqs. (42) and (43) into the right-hand side of Eq. (41),
one can find the equation with respect to �τθ1 (�η),

d2�τθ1
d�η2

¼ C2

cos2 θ1
(�τθ1 � �η), (44)

FIG. 18. Dimensionless thermal conductivity �k vs density parameter �nS for
�Rf ¼ 0:01 at Bic ¼ 0 (red squares and curve 1), Bic ¼ 0:01 (green triangles
and curve 2), Bic ¼ 0:1 (blue gradients and curve 3), Bic ¼ 1 (magenta dia-
monds and curves 4), Bic ¼ 10 (cyan circles and curve 5), and Bic ¼ 100
(orange right triangles and curve 6). The symbols represent numerical values.
The dashed curves are calculated with Eq. (71). The dashed-dotted and
dashed-double-dotted curves are calculated with Eqs. (27) and (65), respec-
tively. The thin black lines show the result of fitting the calculated values of con-
ductivity at Bic ¼ 10 and Bic ¼ 100 to the linear scaling law in limited ranges
of �nS.
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where

C2 ¼ 2Bic�nS
1
π
þ 2�Rf

� �
: (45)

The general solution of Eq. (44) satisfying condition �τθ1 (0) ¼ 0 has
the form of

�τθ1 (�η) ¼ �ηþ eD sinh
C�η

cos θ1

� �
, (46)

where ~D, which does not depend on �η but can depend on θ1,
should be obtained based on another boundary condition formu-
lated for any of the SC ends. In order to simplify the form of this
boundary condition, we represent ~D in the form ~D ¼ �D cos θ1,
where D ¼ D(θ1) is an unknown function. Then,

�τθ1 (�η) ¼ �η� D cos θ1 sinh
C�η

cos θ1

� �
: (47)

The boundary condition at �η ¼ cos θ1=2 can be found by averag-
ing Eq. (9b),

dT f ,θ1

dx1
jx1¼xC1þLf ( cos θ1)=2

¼ 1
cos θ1

σc

Af kf

hNJi(3,4)
2

hΔTθ1i(3,4), (48)

where hNJi(3,4)=2 is the total number of junctions of types 3 and 4
at a SC end [ junctions of types 1 and 2 do not contribute to the
right-hand side of Eq. (9b)],

hNJi(3,4) ¼ hNJiAex(3) þ Aex(4)

Aex
¼ 4�nS�Rf (1þ π�Rf ), (49)

and hΔTθ1i(3,4) is the average temperature difference at such
junctions. hΔTθ1i(3,4) is derived in Sec. SII in the supplementary
material in the form of Eq. (S41) [see also Eq. (B4) in Appendix B],

hΔTθ1i(3,4) ¼∇TxLf
cos θ1
2

Kþ π�Rf Fθ1 (D)

1þ π�Rf
� τθ1

Lf cos θ1
2

� �
, (50)

where the functional Fθ1 (D) is given by Eqs. (B5) or (S43) in the
supplementary material and

K ¼ 1þ (8=π þ π)�Rf þ (16=3)�R2
f : (51)

After combining Eqs. (47)–(50), the boundary condition reduces to

�D C cosh
C
2

� �
þ A sinh

C
2

� �� �
þ 1þ A

2

¼ Bic�nS�Rf K þ πBic�nS�R
2
f Fθ1 (D), (52)

where

A ¼ 2Bic�nS�Rf (1þ π�Rf ): (53)

Equation (52) is an integral equation with respect to the unknown
function D ¼ D(θ1). We did not perform a comprehensive analysis of
this equation; however, at least one physically meaningful solution of
Eq. (52) can be easily found. The results of numerical simulations
show that, for a SC embedded into a dense isotropic network, the tem-
perature gradient ∇Tfx averaged over the SC length is independent of
θ1 (Fig. 15). For the temperature distribution given by Eq. (47),

∇T fx ¼
ð(Lf =2) cos θ1

�(Lf =2) cos θ1

dT f ,θ1

dx1

dx1
Lf cos θ1

¼ ∇Tx
�τθ1 (( cos θ1)=2)
( cos θ1)=2

¼ ∇Tx(1� 2D sinh (C=2)), (54)

and ∇T fx does not depend on θ1 only if D does not
depend on θ1. For constant D, Eq. (B6) reduces to
Fθ1 (D) ¼ (8=π2)(D sinh (C=2)� (1=2)) and D can be found from
Eq. (52) as

D ¼ 1þ A=2� B
C cosh (C=2)þ A sinh (C=2)

, (55)

where

B ¼ Bic�nS�Rf
K(C þ A tanh(C=2))þ (8=π)�Rf (tanh(C=2)� C=2)

C þ (Aþ (8=π)Bic�nS�R
2
f )tanh(C=2)

:

(56)

Equation (47) with parameters A, B, C, D, and K given by
Eqs. (53), (56), (45), and (51) describes the distribution of the
average temperature along a SC in a dense network. At �Rf � 1,
the temperature distribution is close to the linear one (Fig. 20)
with zero temperature gradient at the SC ends at �Rf ¼ 0, because
for slender rods only the junctions of type 1 are possible,

FIG. 19. Thermal conductivity �k vs density parameter �nS for �Rf ¼ 0:1 (red),
�Rf ¼ 0:3 (green), and �Rf ¼ 1 (blue) at Bic ¼ 1 (squares), Bic ¼ 10 (triangles),
Bic ¼ 100 (gradients), and Bic ¼ 1000 (diamonds). The symbols connected by
thin solid curves represent numerical values. The dashed curves are calculated
with Eq. (71). The dashed-double-dotted curves are calculated with Eq. (65).
The dashed curves, shown only for Bic ¼ 1 and Bic ¼ 10, visually almost coin-
cide with the corresponding solid curves.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 065102 (2020); doi: 10.1063/1.5136238 127, 065102-18

Published under license by AIP Publishing.

https://doi.org/10.1063/1.5136238#suppl
https://doi.org/10.1063/1.5136238#suppl
https://doi.org/10.1063/1.5136238#suppl
https://aip.scitation.org/journal/jap


hΔTθ1i(3,4) ¼ 0 and, consequently, Eq. (48) requires zero tempera-
ture gradient at the SC ends. For moderate and large �Rf , e.g.,
�Rf ¼ 1, the temperature gradient at the SC ends increases above
of the temperature gradient in the sample, ∇Tx , so that the
average temperature gradient, ∇T fx , along a SC given by Eq. (54)
can also be larger than ∇Tx . In particular, ∇T fx ! ∇T1

fx at
Bic�nS ! 1, where

∇T1
fx ¼ ∇Tx

K
1þ (4=π þ π)�Rf

, (57)

(dashed-dotted curve in Fig. 21). On the other hand, the temper-
ature gradient at the center of a SC,

∇TfxC ¼ dT f ,θ1

dx
jx¼xC1

¼ ∇Tx(1� CD), (58)

is almost independent of �Rf and smaller than ∇Tx at any finite
Bic�nS. In addition, ∇T fxC ! ∇Tx at Bic�nS ! 1 regardless of �Rf .

The average temperature difference at junctions hΔ�T (þ)i1 can
be found based on Eqs. (40) and (47). The approach to evaluation
of hΔ�T (þ)i1 is briefly described in Appendix C. The detailed deri-
vation presented in Sec. SIII in the supplementary material results
in Eq. (S56),

hΔ�T (þ)i1 ¼ π

2

(1þ 2π�Rf )D1 þ π�Rf KD2 þ 2�R2
f (1þ (8π=3)�Rf þ π2�R2

f )

(1þ π�Rf )(1þ 4π�Rf þ 2π2�R2
f )

,

(59)

where D1 ¼ D[C cosh(C=2)� 2 sinh(C=2)]=C2, D2 ¼ D sinh(C=2),
and the subscript “1” indicates that this value is obtained for
dense networks at �nS ! 1. The temperature difference depends
only on �Rf and Bic�nS. At fixed �Rf , Bic�nS is proportional to the Biot
number BiT ¼ BichNJi, which is defined by the average total

conductance of all junctions for a single fiber.59 This observation
means that BiT serves as a true measure of the effect of the intrinsic
conductivity of individual fibers on the effective conductivity of
fibrous materials. For dense networks, when �nS and hNJi are large,
this effect can control the effective conductivity even if the intrinsic
fiber conductivity is large and, correspondingly, Bic is small.

At Bic ! 0, hΔ�T(þ)i1 approaches hΔ�T (þ)i01 given by Eq. (25).
At Bic ! 1, hΔ�T(þ)i1 approaches hΔ�T (þ)i11 given by the following
equation:

hΔ�T (þ)i11 ¼

π

2
�R3
f

8π=3� 8=π þ [(8π2 � 32)=3þ 2π2]�Rf þ π(2π2 � 56=9)�R2
f

(1þ π�Rf )(1þ 4π�Rf þ 2π2�R2
f )(1þ (4=π þ π)�Rf )

,

(60)

(dashed curve in Fig. 21). At finite Bic, hΔ�T(þ)i1 is in between
hΔ�T(þ)i01 and hΔ�T(þ)i11.

Equation (59) predicts a complex dependence of hΔ�T(þ)i1 on
Bic�nS at finite �Rf (Fig. 20). For slender rods, Eq. (59) reduces to

hΔ�T(þ)i1 ¼ π=8
Bic�nS=(2π)

1�
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bic�nS=(2π)

p� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bic�nS=(2π)

p
0@ 1A: (61)

As shown in Sec. SIV in the supplementary material, this
equation can be approximated by Eq. (S69) obtained based on a
hypothesis of linear temperature distribution along a SC. In the
high-density approximation, Eq. (S69) in the supplementary
material reduces to

hΔ�T (þ)i1 ¼ π=8
3þ Bic�nS=(2π)

: (62)

FIG. 21. Average temperature differences hΔ�T (þ)i01 [red solid curve, Eq. (25)
for Bic ¼ 0] and hΔ�T (þ)i11 [green dashed curve, Eq. (60) for Bic ! 1], as
well as average gradient of fiber temperature rT1

fx =rTx [blue dashed-dotted
curve, Eq. (57) for Bic ! 1] vs aspect ratio �Rf .

FIG. 20. Distributions of the average fiber temperature �τθ1 (�η) given by Eq. (47)
for Bic�nS ¼ 100, cos θ1 ¼ 1, and various �Rf : �Rf ¼ 0 (red), �Rf ¼ 0:01 (green),
�Rf ¼ 0:1 (blue), �Rf ¼ 0.3 (cyan), and �Rf ¼ 1 (magenta).
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The good match between the predictions of Eqs. (61) and (62),
shown by the solid and dashed curves in Fig. 22, proves that
Eq. (62) provides good approximation of hΔ�T(þ)i1 for slender rods.

The comparison of numerical values of hΔ�T (þ)i with predic-
tions of Eq. (59), plotted in Figs. 23 and 24 as solid and dashed
curves, respectively, shows a good agreement between the two at
�nS . 50. At �Rf ¼ 0, the numerically calculated temperature differ-
ences approach zero at �nS ! 1, while at �Rf . 0 they approach
nonzero asymptotic values that are in perfect agreement with pre-
dictions of Eq. (60). These asymptotic values, however, are small
for high-aspect-ratio SCs.

Depending on Bic and �Rf , the numerical profiles of hΔ�T(þ)i as
functions of �nS can be monotonous or exhibit a maximum. The
presence of a maximum is characteristic for high-aspect-ratio fiber
networks at an arbitrary Bic, as well as for short-aspect-ratio fiber
networks at small Bic. At small �Rf , hΔ�T(þ)i first rises when �nS
increases from below the percolation threshold and then achieves
its maximum as a result of the reduction in the correlation of SC
temperatures. For small �Rf and large Bic�nS, Eqs. (54) and (58)
predict that both ∇T fx and ∇T fxC are close to ∇Tx and, hence, the
temperature distribution in a SC along the coordinate x is close to
the distribution of the average temperature T(x) in the sample.
With further increase in �nS, hΔ�T(þ)i starts to drop, because the
temperatures of SCs with junctions at points with the same coordi-
nate x almost coincide with each other and with the average tem-
perature T(x) of the sample. For short SCs at large Bic, the profiles
of hΔ�T(þ)i as functions of �nS become monotonous because the
asymptotic temperature difference is relatively high.

After inserting Eqs. (59), (19), and (22) into the right-hand
side of Eq. (17), one can express the conductivity at finite Bic as

k ¼ σcC0(�Rf , Bic�nS)�n
2
S , (63)

where

C0(�Rf , Bic�nS) ¼ C0
0(�Rf )

hΔT (þ)i1
hΔT (þ)i01

: (64)

According to Eqs. (59) and (63), the effect of the intrinsic conduc-
tivity of SCs on the average temperature difference hΔ�T (þ)i and
bulk conductivity is not defined solely by Bic but depends on
Bic�nS � BichNJi ¼ BiT and, thus, on the average total conductance
at all junctions of a SC.59 This effect can be significant even at

FIG. 22. Average temperature difference hΔ�T (þ)i1 vs Bic�nS. The solid curves
are obtained with Eq. (59) for �Rf ¼ 0 (red), �Rf ¼ 0:01 (green), �Rf ¼ 0:03
(blue), �Rf ¼ 0:1 (cyan), and �Rf ¼ 0:3 (magenta). The red dashed curve for
�Rf ¼ 0 is obtained based on the approximation given by Eq. (62).

FIG. 23. Average temperature difference hΔ�T (þ)i vs density parameter �nS at
�Rf ¼ 0 for Bic ¼ 0 (red squares and curves 1), Bic ¼ 0:01 (green triangles
and curves 2), Bic ¼ 0:1 (blue gradients and curves 3), Bic ¼ 1 (magenta dia-
monds and curves 4), and Bic ¼ 10 (cyan circles and curves 5). The symbols
and solid curves represent numerical values. The dashed and dashed-dotted
curves are calculated with Eqs. (59), (69), and (70), respectively.

FIG. 24. Average temperature difference hΔ�T (þ)i vs density parameter �nS for
�Rf ¼ 0:1 (red), �Rf ¼ 0:3 (green), and �Rf ¼ 1 (blue) at Bic ¼ 1 (squares),
Bic ¼ 0:10 (triangles), Bic ¼ 100 (gradients), and Bic ¼ 1000 (diamonds). The
symbols with solid curves represent numerical values. The dashed-dotted
curves are calculated with Eqs. (69) and (70).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 065102 (2020); doi: 10.1063/1.5136238 127, 065102-20

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


small Bic if the material density and, correspondingly, the density
of contacts between fibers are large.

At �Rf . 0, in the limit Bic ! 1, Eq. (63) reduces to

k11 ¼ σcC
1
0 (�Rf )�n

2
S , (65)

where

C1
0 (�Rf ) ¼ C0

0(�Rf )
hΔT (þ)i11
hΔT (þ)i01

, (66)

and hΔT(þ)i11 is given by Eq. (60). Thus, in the limit of a large Biot
number, the obtained solution predicts quadratic scaling of con-
ductivity with the density parameter for systems composed of SCs
of finite radius. This result is in agreement with numerical calcula-
tions that also predict a quadratic scaling law �k/ �n2S at �nS � 1 and
�Rf . 0 (Fig. 17). Equation (65), however, cannot be used at �Rf ¼ 0.

For slender rods, Eq. (63) reduces to

k ¼ σc�nS
2Bic

1�
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bic�nS=(2π)

p� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bic�nS=(2π)

p
0@ 1A: (67)

Then, at Bic ! 1,

k ! k11 ¼ 1
2
σ f �nS ¼ kf Af

2
ρS
ρf

, (68a)

or

k
σ f

! �k
1
1 ¼ �k

1
1Bic ¼

�nS
2

, (68b)

where the subscript and superscript “1” indicate that these equa-
tions are valid at Bic ! 1 and �nS ! 1. Equation (68) describes
the conductivity of an “ordinary” fibrous material, where the
contact resistance is negligibly small. The dimensional conductivity
k in this case is a linear function of the surface density ρS and is
independent of the fiber length. This equation is in agreement with
the scaling law k/ �nS at �nS � 1 revealed for slender rods in the
numerical calculations of conductivity [Fig. 16(b)].

For disk particles, i.e., at Lf ! 0, Eq. (63) reduces to Eq. (30),
which was previously obtained for disks at Bic ¼ 0, and, thus, the
effects of intrinsic thermal conductivity vanish in the limit of disk
particles. In our model, it occurs since Bic�nS ¼ σcnSL3f =(kf Af ) ! 0
as Lf ! 0 and the redistribution of thermal energy due to heat
conduction is considered only along the “cylindrical” parts of SCs.

In spite of similarity between conductivity curves shown in
Figs. 16(a) and 18 for �Rf ¼ 0 and �Rf ¼ 0:01, the asymptotic behav-
ior of curves plotted for finite Bic in these two cases is different. At
�Rf ¼ 0, the curves follow the linear scaling law, k/ �nS, while at
�Rf ¼ 0:01, the curves follow the quadratic scaling law, �k/ �n2S, as
�nS ! 1. At a large Biot number, the latter is realized at �nS � 103

and is not seen in Fig. 18. At the same time, at �Rf ¼ 0:01, the
curves corresponding to large Biot numbers can have a “transient”
range of �nS where �k(�nS) can be fitted by a linear function. The

examples of such linear fits are shown by solid lines in Fig. 18. At
large �Rf , e.g., �Rf � 0:1, the numerically calculated values of con-
ductivity for moderate �nS can be substantially smaller than the
values predicted by Eq. (65) at Bic ! 1 (Fig. 18). This effect
cannot be captured by the developed theoretical conductivity
equations.

The derivation of Eq. (59) reveals the reasons for the difference
in the asymptotic behavior of conductivity at finite Bic between
slender rods and SCs with �Rf . 0. For slender rods, where only
junctions of type 1 are present, the distribution of average tempera-
ture along a SC is close to a linear one, and the temperature differ-
ence at the junctions drops to zero at Bic ! 1. At �Rf . 0, the
temperature difference at junctions does not drop to zero because,
for junctions of types 2, 3, and 4, points J1 and J2 on the SC axes
have different x coordinates (Fig. 8). This peculiarity is a result of
the assumption that semicircular SC caps have infinite conductivity,
so that the effect of finite contact conductivity does not vanish at
Bic ! 1. Presumably, the finite values of hΔ�T (þ)i at Bic ! 1 could
be avoided if the definition of the junction geometry would be
changed to ensure that xJ1 ¼ xJ2 for junctions of any type. The
origin of the problem with the conductivity of thick SCs at large Bic
is the assumption that the temperature distribution within a SC is
always one-dimensional, while this is not the case for thick SCs.

B. Conductivity equation in semidilute networks

To obtain a good approximation for hΔ�T (þ)i in semidilute
networks, one needs to account for the correlations between SC
temperatures at the junctions. The average temperature difference
in a semidilute network can be expressed as

hΔ�T(þ)i ¼ hΔT (þ)i1 þ hδΔ�T (þ)i, (69)

where hδΔ�T (þ)i is, in general, a function of �nS, Bic, and �Rf . Because
the percolation threshold is independent of Bic, a simple approxi-
mation of hδΔ�T (þ)i can be found from the requirement that
Eqs. (34) and (69) give zero value at the same value of the density
parameter at a fixed �Rf . This condition ensures that the conductiv-
ity of networks with arbitrary Bic and fixed �Rf is turned into zero
at the same �nS. Then,

hδΔ�T (þ)i ¼ hΔT (þ)i1
hΔT (þ)i01

hδΔ�T(þ)i0, (70)

where hδΔ�T(þ)i0 is given by Eq. (33). For slender rods, this correc-
tion reduces the maximum discrepancy between numerical values of
hΔ�T(þ)i and predictions based on Eq. (69) at �nS � 10 below 25% at
Bic ¼ 1 and below 6% at Bic ¼ 0:1 (Fig. 23). For finite �Rf , Eq. (70)
provides good approximation for hΔ�T (þ)i in semidilute networks at
Bic � 10 (Fig. 24). For slender rods, Eq. (S69) derived in the
supplementary material enables calculations of hΔ�T(þ)i in semidilute
networks with almost the same degree of accuracy as Eq. (70).

After inserting Eqs. (69), (19), and (22) into the right-hand
side of Eq. (17), one can find the conductivity at finite Bic in the
following form:

k ¼ σcC0(�Rf , Bic�nS)�n
2
S � σcC1(�Rf , Bic�nS)�nS, (71)
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where

Ck(�Rf , Bic�nS) ¼ C0
k(�Rf )

hΔT(þ)i1
hΔT(þ)i01

, k ¼ 0, 1: (72)

All conductivity equations derived above can be obtained as
asymptotic limits of the most general Eq. (71). The relationship
between various equations obtained in the present study is illus-
trated in Fig. 25. At �Rf � 0:1, Eq. (71) provides a good approxima-
tion of the numerical results for the conductivity of slender rods at
arbitrary �nS and Bic (dashed curves in Figs. 16 and 18). For
�Rf � 0:1, Eq. (71) ensures good approximation of the numerical
data at large �nS. At moderate �nS � 10� 100, Eq. (71) is accurate
only when the numerical values of conductivity are close to or
larger than k11 given by Eq. (65), i.e., when the curves correspond-
ing to different Bic in Fig. 19 are close to or above the dashed-
double-dotted curves corresponding to the limit of Bic ! 1.

In Sec. SIV in the supplementary material, we derived
approximate Eq. (S70) for conductivity of semidilute networks of
slender rods:

k ¼ σc

12π þ 2Bic�nS
�n2S �

48
π2

�nS

� �
: (73)

This equation provides almost the same degree of accuracy as
Eq. (71) with respect to the results of Monte Carlo calculations.

The analog of Eq. (73) in the high-density approximation, when
the second term in the right-hand part can be omitted, was derived
in Ref. 59. Similar equations were proposed on a semiempirical
basis in Refs. 55 and 57.

IX. DOMAINS OF APPLICABILITY OF THEORETICAL
CONDUCTIVITY EQUATIONS AND REGIMES OF HEAT
TRANSFER

The domains of applicability of the theoretical equations and
scaling laws derived above are roughly defined by the approxima-
tions used in the theoretical analysis. In this section, we report the
results of quantitative evaluation of the domains of applicability of
major theoretical equations, such as Eqs. (36) and (71), and the
two major scaling laws, quadratic �k/ �n2S and linear �k/ �nS, in the
space of material parameters that fully characterize a 2D system of
straight conducting fibers, �nS, �Rf , and Bic. The quantitative evalua-
tion is based on a large number (several hundreds) of Monte Carlo
calculations of thermal conductivity performed with a model
described in Sec. III. The difference between numerically calculated
and theoretically predicted values of thermal conductivity is charac-
terized by the relative error ε ¼ 100%� j�kth � �kj=�k, where �k is
the conductivity obtained in Monte Carlo calculations and �kth
is the corresponding value predicted by one of the theoretical
equations. For Bic ¼ 0, the numerical calculations are performed
at 1 � �nS � 103 and 10�3 � �Rf � 10�1 (Fig. 26). For Bic = 0, the
calculations are performed at 1 � �nS � 103 and 10�2 � Bic � 102

for �Rf ¼ 0, 0:01, 0:1, and 1 (Fig. 27).
For systems composed of fibers with infinite thermal con-

ductivity (Bic ¼ 0), the domain where the relative error of
Eq. (36) is smaller than 10% corresponds to the patterned area

FIG. 25. Sketch illustrating the relationships between various theoretical con-
ductivity equations obtained in this work. Equation (71) is the most general
equation. Other equations can be considered as asymptotic limits of Eq. (71)
under certain conditions. These conditions are given at arrows depicting direc-
tions of transformation of more general equations into less general ones.

FIG. 26. Domains of applicability of Eq. (36) for thermal conductivity of fibrous
materials in the parameter space (�nS , �Rf ) at Bic ¼ 0. The error of Eq. (36) with
respect to the direct numerical calculations of �k is less than 10% in the domain
shaded by the gray pattern. The error of Eq. (36) with respect to the direct
numerical calculations of �k is less than 1% to the right of the blue dashed
curve. The error of Eq. (36) with C0

1 ¼ 0, when the predicted value of conductiv-
ity follows the quadratic scaling law �k / n2S, is less than 10% in the domain
filled with green color to the right of the red curve.
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in Fig. 26. The boundary of this domain shifts toward smaller �nS
with increasing �Rf due to the reduction of the percolation thresh-
old �nSP with increasing �Rf . In the part of the patterned area to the
right of the blue dashed curve, the error of the theoretically pre-
dicted values is smaller than 1%. The area colored by green corre-
sponds to the domain where the error of Eq. (36) with C0

1 ¼ 0,
i.e., without the correction for finite values of �nS, is less than 10%.
In this domain, both numerically calculated and theoretically pre-
dicted values of thermal conductivity follow the quadratic scaling
law, �k/ �n2S . To the left of the green-colored domain, the system is
gradually approaching the percolation threshold and, as a result,
the thermal conductivity exhibits a superquadratic scaling with
surface density.

The domain in the parameter space where Eq. (36) obtained
for Bic ¼ 0 can be used is also identified in the simulations per-
formed with finite values of the Biot number. Four cross sections
of this domain, where the error of Eq. (36) is less than 10%, are
colored green in Fig. 27. For the range of Bic considered in the cal-
culations, these green regions correspond to relatively small
�nS ,� 102, when a deviation from the high-density limit starts to
be important. As a result, the parts of the domain where thermal
conductivity follows Eq. (36) with C0

1 ¼ 0 are outside the range of
parameters used in the calculations and shown in Fig. 27. With Bic

decreasing below 10�2, the green regions would expand to larger
�nS, and the parts of the domain where Eq. (36) is valid with C0

1 ¼ 0
would appear.

The range of Bic, where Eq. (36) is valid for a given �nS and,
thus, the effects of finite Bic are negligible, can be theoretically esti-
mated based on the comparison of conductivity values given by
Eqs. (27) and (71) or, alternatively, by comparing the values of
temperature difference given by Eqs. (25) and (59). In the Taylor
series of the right-hand side of Eq. (59) with respect to Bic �nS,

hΔT (þ)i1 ¼ hΔT(þ)i01 þ Λ Bic �nS þ 	 	 	 , (74)

where

Λ ¼ dhΔT(þ)i1
d(Bic �nS)

����
Bic �nS¼0

, (75)

the first term hΔT(þ)i01 is given by Eq. (25). By neglecting higher-
order terms in the right-hand side of Eq. (74), a curve that corre-
sponds to the relative error jhΔT (þ)i1 � hΔT (þ)i01j=hΔT (þ)i1 equal

FIG. 27. Domains of applicability of
Eqs. (36) and (71) for thermal conductiv-
ity in the parameter space (�nS, Bic) at
�Rf ¼ 0 (a), �Rf ¼ 0:01 (b), �Rf ¼ 0:1
(c), and �Rf ¼ 1 (d). The error of
Eq. (71) with respect to the direct numeri-
cal calculations of �k is less than 10% in
the domains shaded by the gray pattern.
The error of Eq. (71) with C1 ¼ 0, when
the correction for finite density parameter
is not accounted for, is less than 10% to
the right of thick red curves with arrows.
The error of Eq. (36), which is obtained
for the case of Bic ¼ 0, is less than 10%
in the domains filled by green. The
dashed lines illustrate the analytical
approximation of the upper boundary of
these domains provided by Eq. (76) at
δ ¼ 0:1. In panel (a), in the domain
colored blue, the error of Eq. (68) is less
than 10% and the conductivity follows the
linear scaling law, �k / �nS: The dashed-
dotted line shows the analytical approxi-
mation of the lower boundary of this
domain provided by Eq. (77) at δ ¼ 0:1.
In the blue domain shown in panel (b),
the numerically calculated values of con-
ductivity can be reasonably well fitted, at
a fixed Bic , by a linear function of the
density parameter and �k / �nS. In panels
(c) and (d), in the domains colored
yellow, the error of Eq. (65) is less than
10% and the conductivity follows to the
quadratic scaling law, �k / �n2S.
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to δ can be obtained from the following equation:

jΛj
hΔT (þ)i01

Bic�nS ¼ δ: (76)

For slender rods, Λ ¼ �1=120, as can be established through dif-
ferentiation of Eq. (61). For an arbitrary �Rf , the differentiation of
Eq. (59) results in a complex equation for Λ, which is not provided
here. We obtained this equation using symbolic computations in
MATLAB®, with the MATLAB code provided in Sec. SV in the
supplementary material. The relationship between Bic and �nS corre-
sponding to Eq. (76) for δ ¼ 0:1 is shown by the dashed line in
Fig. 27. As one can see, at �Rf � 0:1, Eq. (76) provides a reliable
estimate for the boundary of a domain, where the effects of finite
Biot number are negligible and Eq. (36) can be used for calculation
of conductivity.

The domains where the relative error of Eq. (71) at Bic = 0 is
smaller than 10% correspond to the patterned areas in Fig. 27. At
�Rf � 0:01, this equation can be used at �nS . 10 for any Bic. If
Eq. (71) is used with C1 ¼ 0, i.e., without corrections for finite �nS,
then its error is less than 10% in the domains to the right of thick
red curves with arrows.

For slender rods, the blue area in Fig. 27(a) marks the domain
where the error of Eq. (68) is less than 10% and the conductivity
closely follows the linear scaling law �k/ �nS. The boundary of this
domain that corresponds to a given relative error δ can be found the-
oretically from the equation j k� k11j=k11 ¼ δ, where k and k11 are
given by Eqs. (67) and (68a), respectively. This equation reduces to

Bic�nS ¼ 2πX2(δ), (77)

where X(δ) is the positive root of the equation tanh X ¼ δ X. For
δ ¼ 0:1, X � 10. Equation (77) is shown by the dashed-dotted curve
in Fig. 27(a).

At finite but small �Rf , e.g., �Rf ¼ 0:01 [Fig. 27(b)], the pattern of
domains in the parameter space is close to the pattern for slender
rods. The asymptotic scaling law at �nS ! 1, however, changes from
linear for �Rf ¼ 0 to quadratic for �Rf . 0. Correspondingly, the blue
region, where the conductivity is described by Eq. (68), does not exist
in the parameter space shown in Fig. 27(b). At the same time, the
results shown in Fig. 18 suggest that, at a sufficiently large Bic, the
conductivity can follow a close-to-linear dependence on �nS in some
limited range of �nS. The domain corresponding to such a “transient”
linear scaling regime is colored blue in Fig. 27(b). The domain where
�k/ �n2S is out of range of parameters depicted in Fig. 27(b).

At larger �Rf , e.g., �Rf ¼ 0:1 and �Rf ¼ 1 [Figs. 27(c) and 27(d)],
the domain where the conductivity can be fitted by a linear function
disappears. At the same time, regions where the conductivity follows
the asymptotic scaling law �k/ �n2S given by Eq. (65) expand toward
smaller �nS. These domains are colored yellow in Figs. 27(c) and 27
(d). The distinct feature of systems with relatively large �Rf is that the
numerically calculated values of conductivity at large Bic can be
smaller than those predicted by theoretical Eq. (65) in the limit
Bic ! 1 (Fig. 19). This fact explains, in particular, why the shaded
area in Fig. 27(c) does not extend to Bic larger than ∼100 in the con-
sidered range of �nS and why the results of numerical calculations can

be better described by the approximate Eq. (65) than the formally
more accurate Eq. (71) within certain ranges of �nS and Bic.

X. MAPPING THEORETICAL EQUATIONS TO A REAL
MATERIAL SYSTEM

The application of the theoretical results obtained in this
paper to a particular material system requires mapping of the prop-
erties and structural characteristics of the material of interest to the
parameters used in the theoretical analysis of thermal conductivity,
i.e., �nS, �Rf , and Bic. To provide an example of such mapping and to
illustrate the relevance of the general analysis of thermal conductiv-
ity established in Fig. 27 for a particular material system, we con-
sider the regimes of conductivity in thin CNT films. We limit our
consideration by films composed of (10,10) single-walled CNTs
with the radius Rf ¼ 6:785 Å,84 which are abundant in samples
produced by laser ablation of carbon targets.8,9,85,86 We assume
that the CNTs are sufficiently long, so that the effects caused by
finite �Rf are negligible. The cross-sectional area of a single-walled
CNT is often defined as an area of a ring with an internal radius
of Rf and a thickness of δf ¼ 3:4 Å,39 which gives
Af ¼ 2πRf δf ¼ 145 Å2 for (10,10) single-walled CNTs [note that
the definition of Af adopted for CNTs is slightly different from the
one discussed for tubes in Sec. II]. The linear density of the CNT is
equal to ρf ¼ 2πmRf nσ ¼ 0:324� 10�15 mg μm−1, where
nσ ¼ 4= 3

ffiffiffi
3

p
l2c


 � ¼ 0:381 Å2 is the surface density of atoms in a
single-walled CNT, m ¼ 12 Da is the mass of a carbon atom, and
lc ¼ 1:421 Å is the graphene lattice constant.84,87 The intrinsic con-
ductivity of (10,10) CNTs, kf , is within the range of
1000�3000Wm −1 K−1 and the intertube thermal contact conduc-
tance, σc, is within the range of 10�11�10�10 WK−1.29,35,39,40,42,72

For our calculations, we choose the conservative estimate of kf equal
to 1000Wm−1 K−1 and σc ¼ 5� 10�11 WK−1 obtained in Ref. 35.

We characterize the surface density of a CNT film with the
surface coverage wS ¼ 2Rf Lf nS, which can also be expressed
through the surface density of the film material ρS as
wS ¼ 2Rf (ρS=ρf ). The contours of constant �nS and Bic in the
parameter space (Lf , wS) are shown in Fig. 28(a). As one can see,
typical nanotube materials are characterized by small Biot numbers
for a single contact and relatively large density parameters. The
Biot number for the whole nanotube, BiT ¼ BichNJi � Bic�nS,
however, is not small, and, in a broad range of material parameters,
the effect of the intrinsic conductivity cannot be neglected. To
make this conclusion apparent, we divided the parameter space in
Fig. 28(a), into three domains separated by solid curves that corre-
spond to solutions of Eqs. (76) and (77) at δ ¼ 0:1. In the green
domain, the effects of finite Bic are negligible and Eq. (36) is valid
with the exception of conditions close to the percolation threshold
(the isoline �nS ¼ 5:64 corresponding to percolation threshold for
slender rods reduces to equation wSLf ¼ 7:66 nm and is closer to
the axes wS ¼ 0 and Lf ¼ 0 than the isoline �nS ¼ 10 shown in
Fig. 28(a)). In the blue domain, the conductivity follows linear
scaling with the material density and can be determined with Eq. (68).
In the red transitional domain, the effects of finite intrinsic con-
ductivity are strong, but the material conductivity does not
approach yet the asymptotic behavior predicted by Eq. (68). In the
red domain, which covers most of the practically relevant material
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parameters, the conductivity can be calculated with Eq. (71). The
conclusion about the strong effect of the intrinsic thermal conduc-
tivity of CNTs on thermal transport in CNT materials is consistent
with results of large-scale mesoscopic simulations of CNT films
reported in Ref. 59. The conductivity k defined by Eq. (3) can be
transformed into the thermal conductivity kF of (10,10) CNT films
in units of Wm−1 K−1 as kF = k/Δz using the approach suggested
in Ref. 56. Here Δz is the film thickness associated with one 2D
monolayer of CNTs assumed to be equal to a CNT diameter plus

the equilibrium distance between surfaces of parallel CNTs,
Δz = 2Rf + 3.114 Å. The values of kF calculated based on Eq. (71)
for various Lf and wS are shown in Fig. 28(b).

The model developed in this paper can be directly applied for
calculation of the conductivity of quasi-2D layered CNT systems,65

where the chemical cross-links or electrical charges counterbalance
the intertube van der Waals attraction and prevent rearrangement
of nearly straight individual CNTs into bundles. In most CNT
films, however, the structure of contacts between individual CNTs
and the corresponding intertube conductance72 is strongly affected
by the self-assembly of CNTs into networks of interconnected
bundles.5,7,85,88 The presence of nanotubes that serve as intercon-
nects between the bundles is necessary for the stability of CNT
films composed of CNTs in the absence of chemical cross-links.88

As suggested by mesoscopic simulations,56 the nanotubes that serve
as interconnects between the bundles provide more efficient pathways
for the heat propagation than junctions between pairs of crossing
CNTs. As a result, the in-plane thermal conductivity of thin films
composed of CNTs with infinitely large intrinsic conductivity tends to
follow the scaling law obtained and analyzed in the present paper, but
with a larger prefactor than predicted, e.g., by Eq. (28).

XI. CONCLUSIONS AND OUTLOOK

The thermal conductivity of 2D homogeneous and isotropic
fibrous materials composed of straight soft-core spherocylinders is
studied both numerically and theoretically for the arbitrary density
parameter, aspect ratio of fibers, and Biot number defined for a
single thermal contact. In all regimes of thermal transport consid-
ered in this work, the key factor that defines the material conduc-
tivity is the average temperature difference at the thermal contacts
between individual fibers. At large density parameter, this tempera-
ture difference can be described by exact theoretical equations valid
for any Biot number and aspect ratio of the fibers.

For dense materials, the theoretical approach developed in
the present work produces, for the first time, the solution of the
thermal transport problem and corresponding equations for the effec-
tive thermal conductivity valid for an arbitrary Biot number. In this
solution, which becomes increasingly accurate with increasing material
density, the effect of the intrinsic conductivity of fibers is found to be
a function of the product of the density parameter and the Biot
number for a single contact. Thus, this effect can be strong for a suffi-
ciently dense material even at a small Biot number for a single contact.
Such conditions are characteristic of various nanofiber materials with
high intrinsic conductivity of individual nanofibers and low interfiber
contact conductance, e.g., carbon nanotube network materials.

For the intermediate range of material density, semiempirical
corrections to the theoretical equations are obtained based on the
analysis of results of numerical simulations. These corrections
account for growing correlations in fiber temperatures with
decreasing density parameter and extend the range of applicability
of the theoretically obtained equations down to the conditions
close to the percolation threshold. In the vicinity of the percolation
threshold, our numerical results confirm the hypothesis of exis-
tence of the universal conductivity exponent, which depends only
on the spatial dimension of the considered system and is equal to
1.33 for 2D systems independently of the fiber aspect ratio.

FIG. 28. (a) Chart that defines the density parameter �nS (dashed curves) and
Biot number for a single contact Bic (dashed-double-dotted vertical lines) as
functions of the nanotube length Lf and surface coverage wS obtained for
high-aspect-ratio (10,10) CNTs. The values of �nS and Bic for every isoline are
given in the figure panel. The thick solid curves are obtained with Eqs. (76)
and (77). These lines divide the parameter space (Lf , wS) into three characteris-
tic domains. In the green domain, the effects of finite Bic are negligible and
Eq. (36) is valid except for the conditions close to the percolation threshold. In
the blue domain, the conductivity follows linear scaling with the material density
and can be determined with Eq. (68). In the red transitional domain, the effects
of finite intrinsic conductivity are strong, but the conductivity does not yet follow
the asymptotic behavior predicted by Eq. (68). In the red domain, the conductiv-
ity can be calculated with Eq. (71). (b) Thermal conductivity kF = k/Δz of (10,10)
CNT films in units of W m−1 K−1 as a function of Lf and wS. Here, k is calcu-
lated based on Eq. (71) at �Rf ¼ 0 and Δz ¼ 2Rf þ 3:114 Å.56
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The obtained equations, in agreement with the results of
direct numerical simulations, predict a complex dependence of the
effective thermal conductivity of fibrous materials on the density
parameter, aspect ratio of fibers, and Biot number for a single
contact. For materials composed of high-aspect-ratio fibers with a
small Biot number for a single contact, the increase of the density
parameter from the percolation threshold leads to a steep superqua-
dratic initial rise of the conductivity. The superquadratic scaling
turns into approximately linear scaling upon further increase of the
density parameter. This linear scaling law is terminal for dense
systems composed of slender rods. For fibers with a finite aspect
ratio, both numerical simulations and theoretical equations predict
a transition into quadratic terminal scaling due to the effect of
thermal contacts involving semicircular caps of spherocylinders.

The complex dependence of the conductivity on the material
parameters, revealed in this work, provides an explanation of a
variety of scaling laws for thermal conductivity of fibrous materials
reported in the literature based on numerical simulations per-
formed in different regions of the parameter space. Moreover, the
strong dependence of conductivity of fibrous materials on the
length of fibers suggest that a fibrous material can be turned to
function as either a thermal conductor or a thermal insulator by an
appropriate adjustment of material structural characteristics, e.g.,
fiber length. This observation can also explain the large scattering
in experimental data on the conductivity of CNT films and “bucky-
paper” and suggests that the measurements of the thermal conduc-
tivity of such materials should be accompanied by thorough
characterization of the CNT length distribution.

The general theoretical and computational framework devel-
oped in this paper is not limited to 2D fibrous samples and can be
reformulated for nonisotropic and three-dimensional (3D) fibrous
materials. In particular, the mathematical approach for calculation of
the individual contributions of various types of thermal junctions to
the effective conductivity of the material briefly presented in
Appendixes A–C and further detailed in the supplementary material
enables a straightforward generalization to account for additional sto-
chastic factors, such as preferential orientations of fibers and material
anisotropy, distribution of fiber length, etc. The approach developed
in the present paper can also be extended to account for additional
features of thermal transport in fibrous materials, such as the length-,
temperature-, and pressure-dependent thermal properties of individ-
ual fibers and their thermal contacts, as well as the presence of
defects serving as additional thermal resistors that impede the propa-
gation of heat along individual fibers.89,90 The developed theory can
also be adopted for non-thermal transport processes in fibrous mate-
rial, which can be described by physical laws similar to the Fourier
law for intrinsic conductivity of individual fibers and contact conduc-
tance law for interfiber heat exchange. In particular, the same theory
can be applied to predict the effective electrical conductivity of
fibrous materials,50,51,67,91 when the electrical conductance along the
fibers is described in the diffusive approximation based on the one-
dimensional Ohm’s law.

SUPPLEMENTARY MATERIAL

The supplementary material includes details of derivations of
various equations used in the present work. Sections SI–SIII

provide details of derivations briefly described in Appendixes A–C.
In Sec. SIV, an approximate equation for the thermal conductivity
of slender rods at a finite Biot number is obtained following the
approach suggested in Ref. 59. Section SV contains the MATLAB®
code for calculation of the coefficient jΛj in Eq. (76).
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APPENDIX A: AVERAGE INTER-CENTER DISTANCES AT
JUNCTIONS BETWEEN SCS

The average inter-center distance, hΔ�x(þ)i, introduced in
Eq. (24) is a statistical mean of the random inter-center coordinate
distance in a junction between a pair of SCs, Δx(þ) ¼ (xCj � xCi )=Lf ,
where χi(x) ¼ 1 and δij(þ)(x) ¼ 1 at given x. The value of hΔ�x(þ)i
can be found as a sum of contributions from junctions of different
types shown in Fig. 8,

hΔ�x(þ)i ¼
ð2π
0

hΔx(þ)i(1)(ϑ)
Aex(1)(ϑ)

Aex

dϑ
2π

þ
X4
k¼2

hΔx(þ)i(k)
Aex(k)

Aex
, (A1)

where hΔ�x(þ)i(k) (k ¼ 1, ::, 4) are the average dimensionless inter-
center distances along the axis Ox for junctions of type k, and areas
Aex(k) are introduced in the text above Eq. (21). Although the first
term in the right-hand side of Eq. (A1) implies a possible depen-
dence of hΔ�x(þ)i(1) on the angle ϑ between SCs, the actual deriva-
tions presented in Sec. SI in the supplementary material show that
hΔ�x(þ)i(1) is independent on ϑ and, therefore, the first term in
Eq. (A1) reduces to hΔ�x(þ)i(1)Aex(1)=Aex.

The values of hΔ�x(þ)i(k) can be found as conditional expecta-
tions of the random distance ΔxC ¼ xC2 � xC1 between centers of
SCs along the axis Ox. The expectations are obtained under con-
ditions that (i) SC 1 intersects the line x ¼ 0 and (ii) the junction
point J with coordinate xJ lies to the right of this line, i.e., at
xJ � 0. The generic representations of xJ and ΔxC can be intro-
duced using vector rJ ¼ �ξe1 þ (r=2)e connecting points I and
J shown in Fig. 29 and vector ΔrC ¼ ξ1e1 þ re� ξ2e2 connecting
the centers of SCs C1 and C2, where the unit vectors e1, e, and e2
are directed along the axis a1 of SC 1, along the axis a (J1J2) that
corresponds to the closest distance between SCs, and along the axis
a2 of SC 2, respectively (Fig. 29). The directions of vectors e1, e,
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and e2 can be defined by corresponding angles θ1, ~θ, and ~θ2
between these vectors and the axis Ox. Then, xJ ¼ �ξ cos θ1
þ(r=2)cos ~θ and ΔxC ¼ ξ1 cos θ1 þ r cos ~θ � ξ2 cos ~θ2 can be found
as projections of vectors rJ and ΔrC onto the axis Ox.

For junctions of type 1 shown in Fig. 8(a), r ¼ 0, ~θ2 ¼ θ1 þ ϑ,
and the positions of SC 1 with respect to the axis x ¼ 0 and SC 2
with respect to SC 1 are defined by distances ξ, ξ1, ξ2, and angle θ1
at a given ϑ. For junctions of type 2 shown in Fig. 8(b),
~θ ¼ θ1 � π=2, ~θ2 ¼ θ1 � π=2þ θ2, ξ2 ¼ �Lf =2, and the positions
of SC 1 with respect to the line x ¼ 0 and SC 2 with respect to SC
1 are defined by distances ξ, ξ1, r, and angles θ1 and θ2. For junctions
of type 3 shown in Fig. 8(c), ~θ ¼ θ1 � θ, ~θ2 ¼ θ1 � θ þ θ2,
ξ1 ¼ Lf =2, and the positions of SC 1 with respect to the line x ¼ 0
and SC 2 with respect to SC 1 are defined by distances ξ, ξ2, r, and
angles θ1 and θ. For junctions of type 4 shown in Fig. 8(d),
~θ ¼ θ1 � θ, ~θ2 ¼ θ1 � θ þ θ2, ξ1 ¼ Lf =2, ξ2 ¼ �Lf =2, and the
positions of SC 1 with respect to the line x ¼ 0 and SC 2 with respect
to SC 1 are defined by distances ξ, r, and angles θ1, θ2, and θ, where
the variable r plays a role of a radius variable in polar coordinates.

To find an equation for hΔ�x(þ)i(k), we introduce a set of
geometrical parameters ζ(k) ¼ (ζ , ζ1, . . .) that identify the posi-
tion of SC 1 with respect to the line x ¼ 0, as well as the posi-
tion of SC 2 with respect to SC 1. The subscript “(k)” is
hereinafter used to denote parameters specific for junctions of
type k. The junctions of different types are characterized by
different sets ζ(k) as described above. We then define the condi-
tional PDF f(k)(ζ(k)) of parameters ζ(k) and find hΔ�x(þ)i(k) as a
conditional expectation,

hΔ�x(þ)i(k) ¼
ð
Δ�xC(k)f(k)(ζ(k))dζ(k), (A2)

where Δ�xC(k) ¼ ΔxC(k)=Lf . The details of derivation of hΔ�x(þ)i(k)
for junctions of different types are given in Sec. SI in the
supplementary material.

APPENDIX B: DISTRIBUTION OF AVERAGE
TEMPERATURE DIFFERENCES AT JUNCTIONS ALONG
AN ARBITRARILY INCLINED SC AT A FINITE Bic

The average temperature differences hΔTθ1i(1,2) and hΔTθ1i(3,4)
introduced in Eqs. (41) and (48) can be represented in the follow-
ing form:

hΔTθ1i(1,2) ¼
ð2π
0

hΔTθ1i(1)(ϑ)
Aex(1)(ϑ)

Aex(1) þ Aex(2)

dϑ
2π

þ hΔTθ1i(2)
Aex(2)

Aex(1) þ Aex(2)
, (B1)

hΔTθ1i(3,4) ¼
Aex(3)hΔTθ1i(3) þ Aex(4)hΔTθ1i(4)

Aex(1) þ Aex(2)
, (B2)

where hΔTθ1i(k) is the contribution of junctions of type k. To find
hΔTθ1i(k), we assume that the distribution of temperature along a
SC satisfies Eq. (37). The coordinate of the center of SC 1, xC1 ,
angle between the axis of SC 1 and axis Ox, θ1, and coordinate of
the junction on the axis of SC 1, x1, are assumed to be
fixed, while the position and orientation of SC 2 are random.
Then, hΔTθ1i(1,2) and hΔTθ1i(3,4) can be found as conditional
expectation values of the average temperature difference
between two SCs, which depends on the average temperature dis-
tribution along a SC given by the function τθ1 (x) in Eq. (39). The
derivations described in Sec. SII in the supplementary material
result in

hΔTθ1i(1,2) ¼ ∇Tx(x1 � xC1 )� τθ1 (x1 � xC1 ), (B3)

hΔTθ1i(3,4) ¼∇TxLf
cosθ1
2

Kþ π�Rf Fθ1 (D)

1þ π�Rf
� τθ1

Lf cosθ1
2

� �
, (B4)

where K ¼ 1þ (8=πþ π)�Rf þ (16=3)�R2
f and

Fθ1 (D)¼� 2
cosθ1

ðπ=2
�π=2

dθ
π

ðπ=2
�π=2

dθ2
π

�τθ1�θ�θ2

cos(θ1�θ�θ2)
2

� �
: (B5)

By inserting Eq. (47) under the integral in the right-hand side
of Eq. (B5), the functional Fθ1 (D) can be written as follows:

Fθ1 (D)¼� 4
π2

þ 2
cosθ1

ðπ=2
�π=2

dθ
π

ðπ=2
�π=2

dθ2
π

D(θ1�θ�θ2)cos(θ1�θ�θ2): (B6)

Here, D(θ1) is an unknown function that must be determined
using Eq. (52). It is worth noting that the subscript “θ1” of func-
tions τθ1 (x) and �τθ1 (�η) in Eqs. (39) and (40) defines the value of an
additional argument of these functions, which is equal to the angle

FIG. 29. Schematic representation of two interacting SCs, which illustrates defi-
nitions of vectors rJ , ΔrC , e, e1, and e2 that are introduced to determine the
junction coordinate xJ and inter-center distance ΔxC .
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between the SC axis and axis Ox. Taking this convention into
account, the function �τθ1�θ�θ2 (�η) in Eq. (B5) must be considered as
a function of two arguments, θ1�θ�θ2 and �η.

APPENDIX C: AVERAGE TEMPERATURE DIFFERENCE
AT JUNCTIONS BETWEEN SCS AT A FINITE Bic

The average temperature difference at the junctions at finite
Bic, hΔ�T (þ)i1, introduced in Sec. VIII, can be found based on its
representation in a form similar to that of Eq. (A1),

hΔ�T(þ)i1 ¼
ð2π
0

hΔ�T(þ)i(1)(ϑ)
Aex(1)(ϑ)

Aex

dϑ
2π

þ
X4
k¼2

hΔ�T(þ)i(k)
Aex(k)

Aex
, (C1)

where hΔ�T (þ)i(k) is the average temperature difference at junctions
of type k. The temperature differences can be found as conditional
expectations of the random difference ΔTJ ¼ T2(xJ2 )� T1(xJ1 )
between the average temperatures of SCs 1 and 2 at points J1 and
J2, respectively, found under conditions that (i) SC 1 intersects the
line x ¼ 0 and (ii) the junction point J with coordinate xJ lies to
the right of this line, i.e., xJ � 0.

The distribution of temperature along a SC is assumed to be
described by Eq. (39). The temperature of SC i (i = 1,2) in a junc-
tion where the point Ji has coordinate xJi is then equal to
Ti(xJi ) ¼ T0 þ ∇TxLf [xCi þ �τ~θi (�xJi � �xCi )], where ~θi is the angle
between the axis of SC i and axis Ox (~θ1 ¼ θ1 for all junction
types, but ~θ2 is defined differently for different junction types, see
Appendix A), �xJi � �xCi ¼ �ξi cos ~θi, and �ξi ¼ ξi=Lf is the reduced
coordinate that specifies the position of the point Ji with respect to
the point Ci (Fig. 29), so that

Δ�TJ(k) ¼ Δ�xC(k) þ �τθ2 (�ξ2 cos ~θ2)� �τθ1 (�ξ1 cos θ1): (C2)

Then, hΔ�T (þ)i(k) can be expressed in a form similar to that of
Eq. (A2), where Δ�xC(k) must be replaced with Δ�TJ(k). The derivation
of expressions for hΔ�T (þ)i(k) for junctions of different types is pro-
vided in Sec. SIII in the supplementary material.
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