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Supporting Information for paper entitled “Mesoscopic interaction potential for carbon 

nanotubes of arbitrary length and orientation” by Alexey N. Volkov and Leonid V. Zhigilei 

 

S1.  Numerical Implementation of the Approximate Tubular Potential 

One of the main areas of prospective applications of the approximate tubular potential is in 

mesoscopic dynamic simulations of system consisting of a large number of interacting nanotubes 

(e.g. see Section 4).  To make such simulations possible, the tubular potential should be 

implemented in a computer code capable of fast and accurate evaluation of interaction energies 

and forces acting on segments of the nanotubes.  The efficiency of the evaluation of the forces 

and energies can be significantly improved by recording the functions necessary for calculation 

of the tubular potential in one- and two-dimensional tables and using interpolation of the 

tabulated values during the simulations.  Similar approach is commonly used in atomistic 

molecular dynamics simulations, where the use of tables has been shown to significantly speed 

up the calculation of interatomic potentials and forces.S1  In the tubular potential given by eqs 25 

and 39, the use of tables for potential functions )(|| hu∞ , ),(|| ξhue , and ),( ζΦ h  is found to bring 

significant computational benefits, whereas functions ),( αΓ h , )(αΩ , )(αΘ , and )(min hζ  can be 

either tabulated or evaluated analytically. 

The implementation of the tubular potential in a computer code should account for specific 

mathematical properties of the functions defining the potential.  In particular, special care should 

be taken in the case of almost parallel nanotubes, when 0sin →α  and the right part of eq 25 has 

an indeterminate form.  Complex definitional domains of functions ),( ζΦ h  and ),(|| ξhue  and 

large gradients of these functions in parts of their domains require application of special 

computational procedures aimed at minimization of errors in evaluation of the functions and 

their derivatives.  The ultimate criteria of the appropriate implementation of the tubular potential 

are (1) the computational efficiency of the calculation of energies and forces acting on nanotubes 

and (2) an acceptable accuracy of the total energy conservation in a simulation of an isolated 

system in which the mesoscopic dynamics is governed by internal potential forces.  Below we 

briefly summarize our experience in the numerical implementation of the approximate tubular 

potential. 
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The tabulation of functions )(|| hu∞ , ),(|| ξhue , ),( ζΦ h  and their derivatives requires 

introduction of the domains of the functions that are relevant to non-bonding interactions among 

nanotubes in systems with arbitrary (but physically reasonable) geometric arrangements of CNT 

segments.  The natural choice of the boundaries of the relevant domains is defined by the finite 

range of the interatomic potential given by eq 1.  The cutoff distance for interatomic interactions, 

cr , can be directly translated to the cutoffs distances in the mesoscopic interaction potential.  In 

addition, we slightly reduce the domain of the functions to exclude small regions adjacent to 

singularities, where the functions attain very large values. 

For function )(|| hu∞ , we consider domain defined as ],2[ max0 hRh T Δ+∈ , where 

cT rRh += 2max  and 0Δ  is a small positive constant.  In the calculations reported in this paper, the 

value of 0Δ  is chosen to be 0.3 Å, which is much smaller than the equilibrium distance 

82.32 6/1
0 ≈σ=r  Å of the interatomic potential given by eq 1.  With the potential energy density 

at the lower boundary of the domain being as high as 8104×  eV/Å, we do not expect such inter-

tube distances to be realized in a dynamic mesoscopic simulation performed under realistic 

conditions. 

For function ),(|| ξhue , the domain used in the calculations is schematically shown in Figure 

S1.  Due to the cutoff of the interatomic potential, 0),(|| =ξhue  for maxhh >  and 
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Figure S1. Sketch of the domain 

of the potential density function 

),(|| ξhue  used in the 

implementation of the tubular 

potential in the mesoscopic 

dynamic model.  The domain of 

the function is shown by the gray 

area.
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)(),( |||| huhue ∞=ξ  for cr≥ξ , making it unnecessary to define ),(|| ξhue  for these geometric 

conditions.  In addition, the region where TRh 2≤  and 0>ξ  should be excluded as it 

corresponds to the intersection of the surfaces of the segment and the nanotube.  The domain of 

the potential density ),(|| ξhue , therefore, can be defined as a combination of two rectangular 

parts: )0,[],0[ max crh −×  and ],0[],2( max cT rhR × .  In order to exclude regions of the domain with 

very high values of ),(|| ξhue  (which correspond to surfaces of interacting nanotubes being 

“almost in contact” with each other), we shift the boundaries of the domain by a small distance 

3Δ  taken in this work to be 0.3 Å.  The final domain used for ),(|| ξhue  in the numerical 

implementation of the tubular potential is shown as the gray area in Figure S1. 

For function ),( ζΦ h , the computational domain used in the numerical implementation of the 

tubular potential is schematically shown as the gray area in Figure S2.  The “upper” boundary of 

the domain is defined by function 22
maxmax )( hhh −=ζ , while the “lower” boundary is defined 

by function )(min hζ  that is introduced in eq 23.  As discussed in the text of the paper, function 

)(min hζ  must satisfy the conditions given by eq 24 and should have a continuous derivative. 
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cr Figure S2. Sketch of the domain 

of function ),( ζΦ h  used in the 

implementation of the tubular 

potential in the mesoscopic 

dynamic model.  The domain of 

the function is shown as the gray 

area. 
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 In order to define )(min hζ , we first introduce a continuous but not differentiable function 

defined for 0>h  as follows: 

⎪⎩

⎪
⎨
⎧

Δ+>
Δ+≤<−Δ+=Δζ

,2  if0
,20  if      )2(),(

22

min
T

TT

Rh
RhhRh  (S1) 

where Δ  is an arbitrary positive constant. The function ),(min Δζ h  has infinite derivative 

dhd /minζ  at Δ+= TRh 2 .  Next, we introduce a differentiable function )(min hζ , which satisfies a 

condition ),()(),( 2minmin1min Δζ≤ζ≤Δζ hhh , where 1Δ  and 2Δ  are positive constants that are 

much smaller than the equilibrium distance 0r  of the interatomic potential )(rϕ .  In calculations, 

we define the smooth function )(min hζ  with the help of a fifth order polynomial as follows: 

⎟⎟
⎠

⎞
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⎝
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Δ−−

Δζ=ζ
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),()( TRh
Shh , (S2) 

)]10156(1)[1()()()( 23
5 +τ−ττ−τ−τ+τ−=τ HHHS , (S3) 

where )(τH  is the Heaviside step function.  The functions ),( 1min Δζ h , ),( 2min Δζ h , and )(min hζ  

are shown schematically in Figure S2.  In the calculations reported in this paper, the values of 1Δ  

and 2Δ  are chosen to be 1 Å and 2 Å, respectively. 

The evaluation of function ),(|| ξhue  and its derivatives is done in this work by bi-cubic spline 

interpolationS2 performed on a homogeneous Cartesian mesh that covers the domain shown in 

Figure S1 and is compatible with the six corners of the domain.  The procedure of finding the 

coefficients of the spline function in this case is similar to the one used for rectangular 

domains.S2  The values of ),(|| ξhue  are calculated for each node of the mesh by numerical 

integration of eq 29.  The number of quadrature points used in the integration is 128 for the cross 

sections of the nanotubes (angles 1φ  and 2φ ) and 129 along the axis of the nanotube (variable 

η).  The integration over η  is performed for interval )]()),(,0[max( maxmax hh η+ξη−ξ , where 

22
max )2()( Tc Rhrh −−=η , since potential )(rϕ  in eq 1 is equal to zero for any value of η  

outside this interval.  The bi-cubic spline function for ),(|| ξhue  is calculated for conditions of 
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zero values of the appropriate second and fourth derivatives at the domain boundaries.  These 

conditions ensure the existence and uniqueness of the interpolation function. 

The function )(|| hu∞  is also calculated by cubic interpolation of values tabulated in a one-

dimensional table.  On can avoid building a separate table for )(|| hu∞  as the values of )(|| hu∞  can 

be obtained by bi-cubic spline interpolation from the table created for ),(|| ξhue , using equation 

),()( |||| ce rhuhu =∞ .  The bi-cubic spline interpolation, however, is more computationally 

expensive compared to the cubic interpolation.  Therefore, we use a separate cubic spline 

function for )(|| hu∞ . 

The evaluation of function ),( ζΦ h  and its derivatives is also based on bi-cubic spline 

interpolation.  In this case, however, in order to use a conventional procedure for calculation of 

the coefficients of bi-cubic spline function on a Cartesian mesh of a rectangular shape, we apply 

a transformation of variable ζ  to )]()(/[)]([ minmaxmin hhh ζ−ζζ−ζ=ψ , so that the domain of 

function Φ  transforms into a rectangle ]1,0[],0[ max ×h  for the new set of variables ),( ψh .  The 

values of function ))]()([)(,(),( minmaxmin ψζ−ζ+ζΦ=ψΦ hhhhh  are then calculated for each 

node of the new homogeneous rectangular Cartesian mesh by numerical integration of eq 23, 

with values of potential density )(|| hu∞  obtained by the cubic spline interpolation as discussed 

above.  Finally, the coefficients of the bi-cubic spline function for ),( ψΦ h  are obtained for 

conditions of zero values of the appropriate second and fourth derivatives on the domain 

boundaries.  The use of function )(min hζ  in the form of eqs S2 and S3 ensures continuity of 

second derivatives of ),( ψΦ h .  In this case, ),( ψΦ h  belongs to the same differentiability class 

as its bi-cubic spline approximation. 

The size of the tables used for storing functions ),(|| ξhue  and ),( ζΦ h , as well as their 

derivatives, is chosen in this work to be 1001×1001.  An important advantage of the bi-cubic 

spline interpolation is that the derivatives of the functions (that are necessary for calculation of 

forces) are readily available as derivatives of the spline functions.  As a result, the interaction 

energies and forces remain consistent with each other even if a relatively small number of the 

mesh nodes are used in the calculations.  The minimum number of values that have to be stored 

in the two-dimensional tables is determined in this case not by the error in the total energy 
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conservation in a mesoscopic dynamic simulation, but by the need to ensure a sufficient accuracy 

of interpolation in the regions where the derivatives of the functions are large.  In contrast, the 

use of bi-linear interpolation in the two-dimensional tables (which is a generalization of an 

approach commonly used in atomistic molecular dynamics simulations, e.g. ref S1) requires a 

much larger number of mesh nodes in order to achieve a level of consistency between the forces 

and potentials that provides an acceptable accuracy of the total energy conservation.  For 

example, we found that in order to achieve the same quality of the energy conservation in the 

simulation discussed in section 4, the number of mesh points has to be increased from 106 to 

2×107, i.e. by a factor of 20 compared to the bi-cubic spline interpolation.  Storing the 

corresponding tables of the two functions ( ),( ζΦ h  and ),(|| ξhue ) and their derivatives in a 

computer memory would require at least 7102832 ××××  ≈ 1 Gb and would put rather stringent 

requirements on the computational resources needed for large-scale dynamic simulations. 

The use of the bi-cubic spline interpolation for calculation of the tubular potential provides 

an additional benefit of eliminating the necessity to introduce an explicit smooth transition 

between the case of non-parallel nanotube segments described by eq 25 and the limiting case of 

parallel segments described by eq 9.  We find that it is possible to switch directly between the 

two cases at a pre-defined threshold angle, i.e. 

⎩
⎨
⎧

Δ≥αξξα
Δ<αξξ

=ξξα
α∞

α∞
∞ ,sin),,,,(~

;sin),,,(
),,,( 2

21
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hU
S

S
S

(
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where the constant αΔ  can be as small as 610− .  Undoubtedly, this non-smooth transition 

introduces an additional error, which can be particularly significant in the case when the majority 

of nanotubes are almost parallel to each other, e.g. when they are arranged into bundles.  

Nevertheless, we find that in the dynamic mesoscopic simulation of a single-walled CNT sample 

described in section 4 this approach demonstrates an acceptable level of the total energy 

conservation.  The drift in the total energy during the first nanosecond of the simulation does not 

exceed 2% of the kinetic energy of the system. 
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S2.  Calculation of Forces Acting on a Segment and a Nanotube 

The numerical integration of the equations of motions of nanotubes in a mesoscopic dynamic 

simulation requires evaluation of forces acting on nanotubes.  The calculation of forces involves 

differentiation of the interaction potential, which should be formulated in terms of position 

vectors that uniquely define the positions of the interacting tubes in a global system of 

coordinates.  In this part of the Supporting Information we present the complete description of 

the calculation of forces acting on nanotubes that interact with each other through the tubular 

potential defined by eqs 25 and 39. 

The position of a finite straight segment of a nanotube is defined in a natural way by the 

position vectors of its ends, 1r  and 2r  (Figure S3).  In order to specify the position of semi-

infinite or infinitely-long straight nanotube, one or two points at the tube axis can be chosen 

arbitrarily.  In particular, the position of a semi-infinite straight nanotube can be specified by the 

position vectors of its end eq  and any other arbitrary point located at the axis of the nanotube.  

Here, however, we use an alternative way to specify the positions of semi-infinite nanotubes, 

which simplifies the application of the potential in the case of curved nanotubes.  Namely, the 

position of a semi-infinite nanotube is defined by two arbitrary points located at the axis of the 

nanotube with position vectors 1p  and 2p , as well as by a coordinate eρ  of the nanotube end.  

The coordinate eρ  is defined along the axis of the semi-infinite nanotube with respect to the 

midpoint of the vector connecting points 1p  and 2p , so that the position of the end of the 

nanotubes can be expressed as 

mpq ee ρ−= ,  (S5) 

where ))(2/1( 12 ppp +=  and 1212 /)( ppppm −−=  is the unit vector defining the direction of 

the nanotube (Figure S3).  Note that the position vectors 1r , 2r , 1p  and 2p  are defined in a global 

system of coordinates and are suitable for describing the dynamic behavior of an ensemble of 

interacting nanotubes. 

In order to decrease the number of different geometrical cases to be considered, we restrict 

further consideration by the following condition, 

ee qpqp −>− 12 , (S6) 
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which implies that point 1p  is located between eq  and 2p .  This condition can always be 

satisfied by choosing an appropriate numbering of points 1p  and 2p . 
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Figure S3. Schematic sketch 

illustrating the introduction of 

local Cartesian coordinates Oxyz , 

geometric parameters describing 

the relative positions of a nanotube 

segment and a semi-infinite 

nanotube, and position vectors 

defining the positions of the 

segment and nanotube in a global 

system of coordinates.  The side 

and top views are shown in the 

upper and lower panels, 

respectively. 

The geometric parameters h , α , 1ξ , 1ξ  and eη  that define the tubular potentials ∞SU~  and 

SeU~  (eqs 25 and 39) are functions of position vectors 1r , 2r , 1p , 2p  and coordinate eρ , i.e. 

( )2121 ,,, pprrhh = ,   ( )2121 ,,, pprrα=α ,   ( )212111 ,,, pprrξ=ξ ,    ( )212122 ,,, pprrξ=ξ , (S7) 

( )eee ρη=η ,,,, 2121 pprr . (S8) 

The functional forms of these dependences are derived in sub-section S2.1. 

By inserting eqs S7 and S8 into the right parts of eqs 25 and 39, one can express the tubular 

potential through the position vectors of the interacting nanotubes, i.e. in the form 

( )2121 ,,,~~ pprr∞∞ = SS UU  and ( )eSeSe UU ρ= ,,,,~~
2121 pprr .  The corresponding forces, obtained by 

differentiation of these potentials, are presented in sub-sections S2.2 and S2.3 in a form suitable 

for straightforward implementation in a computer code. 
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S2.1.  Calculation of Geometric Parameters 

To enable the calculation of forces, the geometric parameters h , α , 1ξ , 1ξ  and eη  that 

specify the relative position of a segment and a nanotube in a local system of coordinates should 

be expressed through the position vectors 1r , 2r , 1p , 2p  and the coordinate eρ  defining the 

positions of the segment and the nanotube in the global system of coordinates. 

Before considering the infinitely-long and semi-infinite nanotubes, it is convenient to start 

from a more general case of two cylindrical segments of finite lengths, with ends of the segments 

defined by position vectors 1r , 2r , 1p , and 2p  (Figure S4). 
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Figure S4. Schematic sketch 

illustrating the local Cartesian 

coordinates Oxyz , geometric 

parameters describing the 

relative positions of two 

nanotube segments, and position 

vectors defining the positions of 

the segments in a global system 

of coordinates.  The side and top 

views are shown in the upper 

and lower panels, respectively. 

The description of this system can be simplified by introduction of points r  and p  in the 

middle of the segments, a vector defining the relative position of the two midpoints rΔ , the 

direction vectors of the two segments l  and m , the lengths of segments rL  and pL , and cosine 

of the angle between the segments’ axes Ψ : 

)(
2
1

12 rrr += ,   )(
2
1

12 ppp += , (S9) 

rpr −=Δ ,   || 12 rr −=rL ,   || 12 pp −=pL ,   
rL

12 rrl −
=  ,   

pL
12 ppm −

= ,   ml ⋅=Ψ . (S10) 
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First we consider the case of non-parallel axes ( 1|| ≠Ψ ).  The shortest distance between the 

axes of the segments is realized along the vector rΔ  connecting points O  and O′  that have the 

position vectors r  and p , respectively.  This vector rΔ  can be expressed through the geometric 

parameters defined by eqs S9 and S10 as follows: 

lrr rτ+= ,   mpp pτ+= , (S11) 

21
)(

Ψ−
Ψ−⋅Δ

=τ
mlr

r ,     21
)(

Ψ−
−Ψ⋅Δ

=τ
mlr

p , (S12) 

rpr −=Δ . (S13) 

Then the basis vectors xe , ye , and ze  of the Cartesian coordinates Oxyz  in Figure S4 can 

be defined as 

hx
re Δ

= ,     le =z ,     xzy eee ×= . (S14) 

It allows to express the distance h  and angle α  between the axes of the segments and the 

coordinates iξ  and iη  (i = 1,2) of the segments’ ends as follows 

|| rΔ=h ,     
⎩
⎨
⎧

Ψ−π
<⋅Ψ

=α
otherwise,,arccos2

;0  if,arccos yem
 (S15) 

( ) riii τ−⋅−=⋅−=ξ lrrlrr )( , (S16) 

( ) piii τ−⋅−=⋅−=η mppmpp )( . (S17) 

Thus, eqs S14-S17 enable calculation of all the geometrical parameters of a pair of segments 

based on the position vectors defining the positions of the segments in a global system of 

coordinates.  These results can be easily adopted to the cases where one of the segments is 

replaced by an infinitely long or a semi-infinite nanotube. 

In the case of an infinitely long tube, it is sufficient to omit eq S17. 

In the case of a semi-infinite nanotube, the coordinate eη  of the end of the nanotube with 

respect to the point O′  can be expressed through the coordinate eρ  satisfying eq S5 and 

parameter pτ  defined by eq S12 as follows: 
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( ) peee τ−ρ−=⋅−=η mpq . (S18) 

In the case where the axes of a segment and a semi-infinite nanotube are parallel to each 

other ( 1|| =Ψ ), the origin O  of the local system of coordinates can be chosen arbitrarily along 

the axis of the segment.  We chose the position of the origin O  so that the axis Ox  goes through 

the end of the semi-infinite nanotube.  In this case, 0sin =α  and all other geometrical 

parameters can be calculated with the corresponding eqs S11, S13-S18, where rτ  and pτ  are 

defined as 

lmlr ⋅ρ−⋅Δ=τ er ,     ep ρ−=τ  (S19) 

instead of eqs S12. 

Thus, the system of eqs S9-S19 provides the functional dependence of the geometric 

parameters h , α , 1ξ , 1ξ  and eη  defining the relative positions of a nanotube segment and a 

finite, semi-infinite, or infinite nanotube from the position vectors defining the positions of the 

segment and the nanotube in a global system of coordinates.  These equations, therefore, 

represent a specific form of eqs S7 and S8. 

Eqs S10 and S12-S19 depend only on the relative positions of points 1r , 2r , 1p , and 2p  

(nodes in the mesoscopic model of nanotubes described in Section 4 of the paper).  Therefore, 

these equations expressing the local geometric parameters through the positions of nodes, as well 

as the procedures for the calculation of forces presented in the following sections, can be readily 

adopted for simulations performed with periodic boundary conditions, which exploit the 

minimum image convention (e.g., see Ref. S3).  In the case of the periodic boundary conditions, 

the minimum image convention is applied to the vector subtraction operations in the right parts 

of eqs S10 and S13. 

S2.2.  Calculation of Forces in the Case of an Infinitely Long Nanotube 

In this section, we derive expressions for forces arising from the interaction between a 

segment and an infinitely long nanotube.  The interaction between the segment and the nanotube 

is described by the tubular potential ∞SU~  given by eq 25.  The positions of the ends of the 

segment are defined by position vectors 1r  and 2r , and the position of the nanotube is specified 
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by the position vectors 1p  and 2p .  The corresponding geometric parameters h , α , 1ξ , and 1ξ  

can be calculated from these global position vectors as described in the previous section. 

The straightforward way to calculate forces i∞F  acting on the ends ir  of the segment is to 

insert eqs S7 into the right part of eq 25 and then find the forces by calculating the gradient of the 

potential with respect to the position vectors, iSi U rF ∂−∂= ∞∞ /~ .  Due to the complex structure of 

the geometrical relations in eqs S7, the implementation of this method involves rather 

cumbersome derivations. 

A more simple and elegant derivation of forces is only possible under assumption of 

1)(),( =αΩ=αΓ h .  In this case, the potential density is given by eq 11 and is a function of the 

distance between the point on the axis of the segment and the axis of the tube ( ( )22 sinαξ+h ) 

only.  The potential density at any given point along the axis of the segment is not affected by 

any translations or rotations of the segment that do not affect the distance between this point to 

the axis of the nanotube.  This observation enables calculation of the distribution of forces along 

the segment by direct differentiation of eq 11, which is relatively easy to do.  Integration of the 

force distribution along the segment axis can then be used to evaluate forces acting on the ends 

of the segment.  This derivation of forces can be used as an intermediate step, for testing the 

consistency of forces and energies in the mesoscopic model.  It is unlikely, however, that this 

simple approach can be extended to the general case of the potential density described by eq 12, 

as this density explicitly depends on the orientation of the entire segment with respect to the 

nanotube.  In this case we did not find any alternatives to the calculation of forces using the 

straightforward approach described above, i.e. by evaluation of iSi U rF ∂−∂= ∞∞ /~ .  Omitting all 

auxiliary calculations, below we present only the final result of the derivations. 

We assume that the derivatives of all functions entering eq 25 are calculated and tabulated 

for computationally efficient evaluation in the course of a dynamic simulation.  To make the 

expressions for the force components more compact, we introduce the following notation for 

these functions and their derivatives: 

),( αΓ=Γ h ,     ),( α
∂
Γ∂

=Γ h
hh ,     ),( α

α∂
Γ∂

=Γα h , (S20) 
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)(αΩ=Ω ,     )(α
α
Ω

=Ωα d
d , (S21) 

),( ii h ζΦ=Φ ,     ),( iih h
h

ζ
∂
Φ∂

=Φ ,     ),( ii h ζ
ζ∂
Φ∂

=Φ ζ ,     2,1=i , (S22) 

where αΩξ=ζ sinii .  

In the local Cartesian coordinates (Figure S3), the forces i∞F  acting on the ends of the 

segment can be represented in the form 

zizyiyxixi FFF eeeF ∞∞∞∞ ++= ,   2,1=i , (S23) 

and the components of forces can be calculated as follows 

( )⎥
⎦

⎤
⎢
⎣

⎡
Φ−Φ

α
Γ

−
∂
∂

ξ= ζζ∞ 12221 sin
1 h

h
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L
F x ,     ( )⎥

⎦

⎤
⎢
⎣

⎡
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α
Γ

+
∂
∂

ξ−= ζζ∞ 12212 sin
1 h
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U

L
F x , (S24) 

( )⎥
⎦

⎤
⎢
⎣

⎡
Φ−Φ

α
α

Γξ−
α∂

∂
= ζζ∞ 1221 sin

cos1 U
L

F y ,     ( )⎥
⎦

⎤
⎢
⎣

⎡
Φ−Φ

α
α

Γξ+
α∂

∂
−= ζζ∞ 1212 sin

cos1 U
L

F y , (S25) 

ζ∞ ΦΓ= 11zF ,     ζ∞ ΦΓ−= 22zF , (S26) 

where  

( )hh
h U

h
U

12sin
Φ−Φ

αΩ
Γ

+
Γ
Γ

=
∂
∂ , (S27) 

( ) ( )[ ]UUU
−Φξ−ΦξΓ

αΩ
αΩ+αΩ

+
Γ
Γ

=
α∂

∂
ζζ

αα
1122sin

cossin , (S28) 

( )
αΩ
Φ−ΦΓ

=
sin

12U ,     1212 || ξ−ξ=−= rrL . (S29) 

In the case of 0sin =α , eqs S24 and S25 as well as the potential itself (eq 25) have 

indeterminate forms.  Nevertheless, by applying l'Hôpital's rule to eqs S24 and S25 and taking 

into account eq 14, one can prove that 

h
U

h
h

u
F S

ix ∂

∂
−=

∂

∂ξ−ξ
−= ∞∞

∞→α

||||12

0sin
)(

2
lim ,     0lim

0sin
=∞→α iyF . (S28) 

Considering a limiting case of eqs S26 one can also show that 
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1

||
||10sin

)(lim
ξ∂
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−== ∞

∞∞→α

S
z

U
huF ,     

2

||
||20sin

)(lim
ξ∂
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S
z

U
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Eqs S28 and S29 imply that eqs S24-S26 approach the correct values in the limit of parallel 

tubes. 

For the calculation of forces iSi U pP ∂−∂= ∞∞ /  applied to the points ip  of the nanotube, one 

can use the laws of momentum and angular momentum conservation that should be satisfied in a 

system that consists of a segment and a nanotube experiencing only the internal forces.  The 

conservation of momentum and angular momentum results in the following equations: 

FPP −=+ ∞∞ 21 ,   MPppPpp −=×−+×− ∞∞ 2211 )()( , (S30) 

where 

21 ∞∞ += FFF    and   2211 )()( ∞∞ ×−+×−= FprFprM . (S31) 

are the total force F  and torque M  calculated with respect to the point ))(2/1( 21 ppp += . 

In general, for two arbitrary rigid bodies, eqs S30 have non-unique solutions, since if 1∞P  and 

2∞P  is a solution, then vectors mP a+∞1  and mP a−∞2  with arbitrary a  also satisfy eqs S31 

(here ||/)( 1212 ppppm −−= ).  It is obvious from symmetry reasons, however, that the tubular 

potential for an infinitely long tube, ),,,(~
21 ξξα∞ hU S , can not produce forces that act along the 

axis of the nanotube, i.e. 0=⋅mPi  (one can also prove the validity of this equations by direct 

differentiation of eq 25).  This additional requirement results in the existence of a unique solution 

of eqs S30, which has the following form: 

||2 12
1 pp

mMFP
−
×

+−=∞ ,   
||2 12

2 pp
mMFP

−
×

−−=∞ . (S32) 

Eqs S24-S29, S31, and S32 provide a straightforward algorithm for calculation of forces 

acting between a segment and an infinitely long straight tube. 

S2.3.  Calculation of Forces in the Case of a Semi-Infinite Nanotube 

In this section, we derive expressions for forces arising from the interaction between a 

segment and a semi-infinite nanotube.  The interaction between the segment and the nanotube is 

described by the tubular potential TeU~  given by eq 39.  The positions of the ends of the segment 
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are defined by position vectors 1r  and 2r , and the position of the nanotube is specified by the 

position vectors 1p  and 2p , as well as by the coordinate of the nanotube end eρ  that satisfies eq 

S5.  The corresponding geometric parameters h , α , 1ξ , 1ξ , and eη  can be calculated from the 

global position vectors and coordinate eρ  as described in section S2.1. 

Similarly to the derivations discussed for the infinitely long nanotube in the previous section, 

forces eiF  acting on the ends ir  of the segment are calculated here by inserting eqs S7 and S8 

into the right part of eq 39 and calculating the gradients of the potential with respect to the 

position vectors.  Omitting all auxiliary calculations, below we present only the final equations 

for the components of forces eiF  in the local Cartesian coordinates (Figure S3): 

zeizyeiyxeix
i

Se
ei FFFU eee

r
F ++=

∂
−=

~
,     2,1=i . (S33) 

We assume that the derivatives of all functions entering the right part of eq 39 are calculated 

and tabulated for computationally efficient evaluation in the course of a dynamic simulation.  To 

make the expressions for the force components more compact, we use the notations defined by 

eqs S20 and S21, and introduce the following additional notations: 

)(αΘ=Θ ,     )(α
α
Θ

=Θα d
d , (S34) 
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=ξ , (S35) 
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∑
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∑
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Γ

= , (S38) 

( ) ξαξα
α

α ηΘ−α−αΩ+αΩαΩ+
Γ
Γ

= JJJUU eh 12 sincossinsin , (S39) 
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ξα+αΩ= JJC hz cossin 1
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22

2 cossin ξα+αΩ= JJC hz , (S41) 
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Then the components of eiF  can be calculated as follows 

L
CUF xh

xe
−ξ

= 2
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xe
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CUCF zz
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ze

−−ξ
= 211

2 . (S45) 

The values of )(nhu  can be calculated from eqs S35 if arguments )(nh  and  )(nϑ  are within the 

domain of function ),(|| ξhue  (see Figure S1 and the corresponding discussion in the text) and, 

additionally, 0)( >nh .  The condition 0)( =nh  implies that 0=h .  In this case, from the 

symmetry arguments, ),(|| ξhue  should also satisfy the condition 

.0
0

|| =
∂
∂

=h

e

h
u

 (S46) 

Then one can prove that eqs S35-S45 can be used for force calculation even for 0)( =nh , if )(nhu  

is replaced by zero in this case. 

If )(αΘ  is defined by eq 35, then ( ) αΘ− 2sin/1  and ( ) αΘ− sin/1  in eqs S40 can be 

replaced by ΘC  and αΘ sinC , correspondingly.  In this case none of the equations for force 

calculation has indeterminate form at 0sin =α . 

The forces applied to the semi-infinite nanotube interacting with the segment can be defined 

as follows 
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, (S47) 

where eiP  is the force applied at point ip  and scalar eeQ  is equal to the force applied to the 

nanotube end and acting along the nanotube axis in the direction opposite to the direction of 

vector ||/)( 1212 ppppm −−= .  One can conclude from eq S18 that 1/ −=ρ∂η∂ ee , so that the 

force eeQ  can be easily found by differentiation of eq 39: 

ξΘ−= JQee . (S48) 

Forces eiP  can be found by following an approach described in section S2.2 for the 

corresponding forces i∞P  acting on an infinitely long tube, using the conservation laws for 

momentum and angular momentum.  Contrary to the case of the infinitely long tube, for a semi-

infinite tube the total force acting along the tube axis is not equal to zero, i.e. 0)( 21 ≠⋅+ mPP ee .  

At the same time, one can prove that mPmP ⋅=⋅ 21 ee .  Physically, the last condition is obvious 

because (i) the force components acting along the tube axis appear only due to the presence of 

the tube’s end and (ii) the forces eiP  are defined by eqs S47 as partial derivatives at a constant 

distance eρ .  The latter observation implies that the identical displacements of any of the two 

points ip  along the nanotube axis result in the identical changes in the position of the nanotube’s 

end eq  with respect to the position of the segment defined by points 1p  and 2p .  Therefore, the 

corresponding components of forces should be equal to each other.  

The condition mPmP ⋅=⋅ 21 ee  reduces the equations for eiP  to the form that is completely 

analogous to eqs S32, i.e. 

||2 12
1 pp

mMFP
−
×

+−=e ,   
||2 12

2 pp
mMFP

−
×

−−=e , (S49) 

where 

21 ee FFF += ,   2211 )()( ee FprFprM ×−+×−= . (S50) 

Eqs S36-S45 and S48-S50 provide a straightforward algorithm for calculation of forces 

acting between a segment and a semi-infinite straight tube. 
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