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Mesoscopic tubular potential is developed for the description of the van der Waals interaction between straight
single-walled carbon nanotubes (CNTs) of arbitrary length and orientation. The potential is formulated within
a general continuum description of the van der Waals intertube interactions based on the integration of an
interatomic potential over the surfaces of the interacting nanotubes. The tubular potential reduces the functional
dependence of the potential energy of the interacting nanotubes on six independent geometric variables to a
combination of several functions, each depending on only one or two geometric parameters. The parametrization
of the tubular potential is based on the carbon-carbon interatomic potential describing nonbonding interactions
in graphitic structures. An application of the tubular potential for analytical analysis of the interaction between
two CNTs reveals the conditions and driving forces responsible for the alignment of nanotubes and generation
of CNT bundles. First mesoscopic simulations, performed with the tubular potential for a system consisting
of thousands of nanotubes and having dimensions on the order of a micrometer, predict a spontaneous self-
assembly of nanotubes into a continuous network of bundles with partial hexagonal ordering of CNTs in the
bundles. The structures produced in the simulations are similar to the structures of CNT films and mats
observed in experiments. The general procedure used in the design of the tubular potential is not limited to
single-walled CNTs or other graphitic structures and can be extended to a diverse range of systems consisting
of various types of nano- and microtubular elements, such as nanotubes, nanorodes, and microfibers, providing
new opportunities for mesoscopic modeling of complex nanocomposite materials.

1. Introduction

A principal challenge in the computational investigation of
a broad class of nanomaterials and nanoscale devices based on
carbon nanotubes (CNTs) is presented by the absence of a
computationally efficient description of the effective van der
Waals interactions among the CNTs. These weak nonbonding
interactions are responsible for the spontaneous self-organization
of CNTs into complex intertwined structures consisting of
interconnected bundles or ropes of nanotubes, such as the ones
observed in CNT films, mats, and fibers; see, e.g., refs 1-10.
The microscopic structure of CNT-based materials is defined
by the spatial arrangement of CNT bundles rather than nanotubes
themselves, and therefore, a computational analysis of the
structure and properties of these materials should include a large
number of CNTs. While a number of computationally efficient
mesoscopic models for simulation of individual CNTs have been
developed,11-14 the lack of a correspondingly efficient and
accurate description of intertube interactions prevents application
of these models for investigation of structural self-organization
and collective dynamic behavior in CNT-based materials and
structures.

In atomistic simulations, the van der Waals interactions
among single-walled CNTs15-19 or between individual shells
in multiwalled CNTs15,19 are computed through the summation
of the corresponding energies and forces for all pairs of
interacting atoms. The interatomic potential for the nonbonding
van der Waals interactions is typically taken in the form of the

Lennard-Jones potential, with parameters fitted to some of the
properties of graphite.20,21 The atomistic modeling, however, is
computationally expensive and cannot be applied for investiga-
tion of the dynamic behavior of large groups of CNTs. The
systems used in atomistic simulations have been limited to small
bundles consisting of several (e.g., four,19 six,16 or seven17,18)
very short (from nanometers to tens of nanometers) single-
walled CNTs or individual multiwalled CNTs consisting of
several (e.g., four19 or eight15) shells.

A continuum representation of the van der Waals interactions
based on numerical integration over the surfaces of interacting
CNTs has been developed within a continuum mechanics model
constructed based on interatomic interactions.14,22,23 Although
more efficient than the atomistic simulations, the finite element
implementation of this continuum model includes a large
number of nodes and exhibits only a moderate improvement in
the computational efficiency as compared to the atomistic
approach.22 Indeed, the number of quadrature points necessary
for an accurate representation of van der Waals interactions in
a 40-walled 480 nm long CNT is found to be 10 million, only
3 times less than the number of atoms in this system, 31
million.14

Neither summation of interatomic interactions in atomistic
simulations nor the direct numerical integration over the surfaces
of interacting nanotubes can provide a method for evaluation
of the van der Waals interactions that would be sufficiently fast
to enable mesoscopic simulations of large CNT ensembles. A
promising approach for an efficient description of van der Waals
interactions in graphitic systems has been suggested in a series
of works demonstrating that simple effective/mesoscopic po-
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tentials can be obtained within a continuum approach, where
the summation of interatomic interactions is approximated by
the integration over the surfaces of interacting objects.24-30 The
effective potentials have been derived for interactions between
fullerene molecules,24 a fullerene molecule and a graphene
sheet,25,26 a fullerene and a single-walled CNT,26 a molecule or
a gas-phase atom and a CNT,29 a CNT and a surrounding
polymer material,30 single-walled CNTs of the same26 and
different radii,27 and multiwalled CNTs of different radii.28 The
effective potentials describe the nonbonding interactions between
the graphitic structures at a mesoscopic rather than atomistic
level, expressing the interaction energies in the form of simple
functions that depend only on the distance between interacting
objects. Moreover, when expressed in terms of reduced param-
eters, the interactions derived for different graphitic structures
are found to be well represented by a universal graphitic
potential.26-28 While the effective mesoscopic potential for
fullerene molecules and graphene have already found applica-
tions in large-scale mesoscopic simulations of fullerene films,
clusters, and bulk structures, e.g., refs 24 and 31-33, the
application of the potential for CNTs is limited by the
geometrical limitations of the modelssall derivations have been
performed for straight, infinitely long, parallel CNTs.26-28 The
only CNT systems that can be investigated with the current
models are bundles of straight infinitely long nanotubes.26,29,34,35

In order to enable mesoscopic simulations of a variety of CNT
materials with complex spatial arrangement of nanotubes, in
this paper, the continuum approach for calculation of the
mesoscopic potential is extended to the interactions between
CNTs of arbitrary lengths and orientation. In spite of the
geometrical complexity of the problem (the interaction energy
is a function of six independent geometric variables), a compact
and accurate approximation of the interaction potential is
established and verified for various CNT configurations. The
developed mesoscopic potential is applied for analysis of the
torque acting on nonparallel CNTs and responsible for self-
assembly of CNTs into bundles. The applicability of the
potential for large-scale dynamic mesoscopic simulations of the
collective behavior of large CNT ensembles is also illustrated
in a simulation performed for a system consisting of 4050
(10,10) 400 nm long single-walled CNTs.

2. Mesoscopic Tubular Potential for the van der Waals
Interaction between CNTs

In this section, we introduce an effective/mesoscopic tubular
potential that provides an approximate but highly accurate
description of nonbonding interactions between two straight
single-walled CNTs of arbitrary length and relative orientation.
The tubular potential expresses the intertube interaction energies
and forces in a compact functional form that is suitable for
computationally efficient implementation in a dynamic model
that is capable of treating large ensembles of interacting CNTs.
Although the tubular potential is appropriate for analysis of
systems consisting of straight CNTs (e.g., section 3), we envision
that the main area of future applications of the potential will be
in modeling of the dynamic behavior of large ensembles of
flexible CNTs represented as chains of cylindrical segments
(e.g., section 4). Therefore, below, we use the term “CNT
segment” to refer to one of the main structural elements
considered in this worksa straight CNT of a finite length.

2.1. FromAtomistictoContinuumDescriptionofCNT-CNT
Interaction. The mesoscopic tubular potential describing the
van der Waals interaction between two straight single-walled
CNTs (or CNT segments) is designed in this work within a

continuum approach based on the integration over the surfaces
of the interacting CNTs.14,22-30 It is convenient, however, to
make a direct connection between the continuum approach and
atomistic representation of the van der Waals interactions. In
atomistic modeling, the nonbonding interaction between CNTs
is represented by a sum of interatomic interactions for all pairs
of carbon atoms that belong to different CNTs. The nonbonding
interatomic interactions are commonly described by the Lennard-
Jones potential modified by a cutoff function that enforces the
finite range of the interatomic interactions:

where r is the distance between the interacting atoms, ε and σ
are parameters of the potential that define the energy and length
scales of the carbon-carbon interaction, respectively, and C(r)
is the cutoff function. The values of the parameters of the
potential are typically obtained by fitting to the structural,
cohesive, and/or elastic properties of various carbon systems,
with values obtained for graphite and CNTs exhibiting a
substantial deviation from those providing the best fit to fullerene
systems.26

In this work, the functional form of the cutoff function and
the parameters of the potential are adopted from a popular
AIREBO potential,21 commonly used in atomistic modeling of
carbon nanostructures and molecular hydrocarbon systems; see,
e.g., refs 36-38. The values of σ ) 3.40 Å and ε ) 2.84 meV
are chosen in this case to reproduce the interlayer separation
and the elastic constant c33 in graphite. The cutoff function is
defined as C(r) ) S(τ(r)), where

τ(r) ) (r - rc0)/(rc - rc0), and H(τ) is the Heaviside step
function. The cutoff function varies from 1 to 0 when r changes
from rc0 to rc, which ensures a smooth transition of the
interatomic potential to zero at the cutoff distance rc. The values
of the cutoff parameters are rc0 ) 2.16σ and rc ) 3σ.39

The relative position of two straight CNTs (or CNT segments)
can be characterized by six independent geometric parameters,
as illustrated in Figure 1a. The relative position of the axes of
the segments is defined by the shortest distance h and the angle
R between the axes. The length and the location of the segments
along the axes are defined by coordinates of their ends, �1, �2,
η1, and η2 with respect to the points defining the shortest distance
between the axes, O and O′. In order to simplify further
discussion, we assume that the directions of axis O� and O′η
are chosen so that the conditions |�1| e �2 and |η1| e η2 are
satisfied. These conditions imply, in particular, that if both ends
of a CNT segment are located on the same side of its axis from
point O (or O′), the axis is directed toward the segment and the
first end of the segment is closer to the point of origin of the
axis than the second end. The lengths of the segments can be
finite, semi-infinite, or infinite. In latter cases, some of the
coordinates, �1, �2, η1, and η2, can have infinite values.

Following an approach adopted in refs 24-28 for the design
of the effective/mesoscopic potentials for infinitely long parallel
CNTs, fullerenes, and graphene sheets, the design and param-
etrization of the mesoscopic tubular potential for CNT segments
of arbitrary length and orientation is based on the substitution
of summation of interatomic interactions by integration over

�(r) ) 4ε[(σ
r )12

- (σ
r )6]C(r) (1)

S(τ) ) H(-τ) + H(τ)H(1 - τ)[1 - τ2(3 - 2τ)]
(2)
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the surfaces of the interacting nanotubes. The real atomic
configurations at the surfaces of CNTs are replaced in this case
by an average continuous distribution of atoms with surface
density nσ, so that the segment-segment interaction potential
USS can be found by integration of the interatomic potential
over the surfaces of the interacting segments. For two CNT
segments of the same radius RT, the interaction potential can
then be expressed as

where the integration is performed along the axes of the
segments, � and η, and over the angles φ1 and φ2 that specify
positions of points in the cross sections of segments (see Figure
1b). The distance between two points on the surfaces of the
segments is expressed through the six geometric parameters as

The integral for the segment-segment interaction potential,
eq 3, is written under assumption that interacting segments have
the same radius RT. The distribution of radii in real CNT
materialsdependsontheprocessusedformaterial fabrication2,6,10,40

but is often sufficiently narrow (e.g., the single-walled CNTs
produced by laser ablation of carbon targets have an average
radius of ∼0.7 nm1,2,6,40 with variation of less than (0.15 nm2)
to justify the assumption of a constant radius in modeling of
such materials. The deviation from the perfect cylindrical shapes
due to the van der Waals intertube interactions, particularly
significant for single-walled CNTs of large diameters,15,41,42 as
well as changes in the shapes of the local cross sections due to
the buckling or irreversible plastic deformation of nanotubes
under compression, bending, and torsional deformation14,18,19,22,23,43

are neglected in the model. CNTs are assumed to have ideal
structure and geometry that is completely characterized by a
pair of integer numbers (n,m) defining the chiral vector of a
nanotube.44,45 The radius of an (m,n) CNT can be calculated as
RT ) lc[3(n2 + m2 + nm)]1/2/(2π), where lc ) 1.421 Å is the
carbon-carbon interatomic distance in a graphene sheet.45 The
number density of atoms on the surface of a CNT is nσ )
4/(3�3lc

2) ≈ 38.1 nm-2. The presence of hemispherical caps
at the ends of the nanotubes is not taken into account in the
potential defined by eq 3 but can be added to the computational
model implementing the mesoscopic tubular potential.

The four-dimensional integral defining the segment-segment
potential, eq 3, can only be simplified26-28 or expressed in terms
of series expansions46 for some special cases, e.g., for infinitely
long parallel CNT and interatomic interaction described by the
Lennard-Jones potential without a cutoff. In the general case
of nonparallel nanotubes of finite lengths, the direct numerical
integrationofeq3is theonlywaytocalculate thesegment-segment
interaction potential. An analysis of several test cases indicates,
however, that an acceptable accuracy of the integration can be
obtained only when a large number of quadrature points is used,
e.g., 50-100 quadrature points per nm of a (10,10) CNT. While
this number is smaller than the number of atoms (∼162 atoms/
nm for a (10,10) CNT), the computational cost of the integration
is still too high to allow for “on the fly” evaluation of the van
der Waals interactions in a dynamic simulation of large CNT
ensembles. A similar observation on the high computational cost
of the description of the van der Waals interactions has been
made in continuum simulations of multiwalled CNTs in refs
14 and 22. The fact that the segment-segment potential USS,
as defined by eq 3, is a function of six independent geometric
parameters makes it also impossible to evaluate and tabulate
the potential for all possible arrangements of interacting CNTs.

The number of independent geometric variables can be
reduced if one or two of the limits of integration in eq 3 are set
to infinity, defining the potentials for interaction between a finite
segment and a semi-infinite nanotube (USe) and between a
segment and an infinitely long nanotube (US∞):

To make the notation more transparent, the location of the
end of the semi-infinite nanotube in eq 5 and below is denoted
as ηe rather than η1. According to the rule that defines the
direction of the η-axis (see above), eq 5 defines the potential

Figure 1. Schematic sketch illustrating the introduction of local
coordinates Oxyz and geometrical parameters used for characterization
of the relative positions of two nonparallel (a) and parallel (b) straight
cylindrical CNT segments. The side and top views are shown in panel
a; only the side view is shown in panel b. In panel a, the axis x is

directed along the vector OO'f defining the shortest distance between
the axes of the segments. In panel b, for the convenience of the analysis
presented in section 2.3, the origin of the Cartesian coordinates is chosen
so that the axis Ox goes through the left end of the second segment (η1

) 0). Cross sections of the segments are shown in panel b, with angles
φ1 and φ2 specifying positions of points in the cross sections used for
integration over the surfaces of the two segments.

USS(h,R, �1, �2, η1, η2) )

nσ
2RT

2 ∫�1

�2 ∫0

2π ∫η1

η2 ∫0

2π
�(r(h,R, �, φ1, η, φ2)) dφ2 dη dφ1 d�

(3)

r(h,R, �, φ1, η, φ2) ) [(h + RT(cos φ2 - cos φ1))
2 +

(RT(sin φ2 cos R - sin φ1) - η sin R)2 +

(RT sin φ2 sin R + η cos R - �)2]1/2 (4)

USe(h,R, �1, �2, ηe) ) lim
η2f∞

USS(h,R, �1, �2, ηe, η2) (5)

US∞(h,R, �1, �2) ) lim
η1f-∞
η2f∞

USS(h,R, �1, �2, η1, η2) (6)
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for a semi-infinite nanotube that extends from the point ηe in
the positive direction of this axis.

The two potentials defined by eqs 5 and 6 cover the whole
range of possible intertube interactions in systems consisting
of multiple CNTs. In fact, due to the very large aspect ratio of
CNTs, the vast majority of local intertube interactions in real
CNT-based materials can be represented by eq 6. A relatively
small fraction of the interactions that are affected by the ends
of theCNTsrequires theuseofeq5.Thegeneral segment-segment
interaction potential given by eq 3 can also be expressed through
the combination of two potentials for semi-infinite nanotubes:

If both η1 and η2 are located on the same side of the η-axis
from point O′ (Figure 1a), the validity of the representation of
USS in the form of eq 7 relies on the condition 0 < η1 < η2 that
is the consequence of the rule defining the direction of η-axis.
This condition ensures that the surfaces of the semi-infinite
nanotubes originating at η1 or η2 and extending in the positive
direction of the η-axis do not intersect with the surface of the
(�1,�2) segment.

Despite the reduction of the number of independent variables
to five in eq 5 and four in eq 6, the tabulation of US∞(h,R,�1,�2)
and USe(h,R,�1,�2,ηe) with sufficient accuracy is still impractical
(or even impossible) due to limitations of computer memory.
Therefore, the design of a computationally efficient intertube
potential has to rely on approximate representations of US∞ and
USe, that express them through one- and two-dimensional
functions. Such functions can be evaluated and tabulated in
advance, and used as needed in the course of a dynamic
simulation. The formulation of an accurate and computationally
efficient approximation of US∞ and USe is presented below, in
sections 2.2 and 2.3.

2.2. Potential US∞ for Interaction of a CNT Segment with
an Infinitely Long CNT. The potential for the interaction of a
CNT segment with an infinitely long nanotube, US∞(h,R,�1,�2),
can be expressed as an integral of the density of the interaction
potential, u∞(h,R,�), along the axis of the segment:

The design of an approximate interaction potential, discussed
below, is based on the introduction of an accurate approximation
for the potential density ũ∞(h,R,�), which is then used in eq 8
to obtain the approximate interaction potential, ŨS∞(h,R,�1,�2).

In the case when the segment and the nanotube are parallel
to each other (sin R ) 0), the potential density does not depend
on � and eq 8 reduces to

where

is the potential density for parallel infinitely long nanotubes and
r(h,φ1,η,φ2) ) [(h + RT(cos φ2 - cos φ1))2 + RT

2(sin φ2 -

sin φ1)2 + η2]1/2. The potential density for parallel nanotubes is
a function of only one variable h. It can easily be calculated
for a given interatomic potential �(r), recorded in a one-
dimensional table with high accuracy, and used in mesoscopic
simulations. The result of the direct numerical integration of
eq 10 for (10,10) single-walled CNTs (RT ) 6.785 Å) and
interatomic potential given by eqs 1 and 2 is shown by the
dashed curve in Figure 2a. The equilibrium distance between
the surfaces of the CNTs, δh0 ) h0 - 2RT (h0 is the equilibrium
distance between the axes of the CNTs), is found to be equal
to 3.144 Å, close to the value δh0 ) 3.154 Å obtained in ref 26
with slightly different parametrization of the interatomic Len-
nard-Jones potential.

The potential density for parallel nanotubes, u∞|(h), can be
used in the design of an approximate representation of the
potential density ũ∞(h,R,�) for an arbitrary relative orientation
of the segment and the nanotube. The idea of the approximation
can be explained with the help of Figure 3, illustrating
interaction between an infinitely long nanotube located on the
η-axis and an infinitesimally thin slice of a nanotube segment
located on the �-axis. The position of the slice on the axis is
defined by coordinate �, the thickness of the slice is d�, and its

USS(h,R, �1, �2, η1, η2) ) USe(h,R, �1, �2, η1) -
USe(h,R, �1, �2, η2) (7)

US∞(h,R, �1, �2) ) ∫�1

�2 u∞(h,R, �) d� (8)

US∞|(h, �1, �2) ) (�2 - �1)u∞|(h) (9)

u∞|(h) ) nσ
2RT

2 ∫0

2π ∫-∞

+∞ ∫0

2π
�(r(h, φ1, η, φ2)) dφ2 dη dφ1

(10)

Figure 2. Potential densities for parallel infinitely long (dashed curve)
and semi-infinite (solid curves) (10,10) single-walled CNTs, u∞|(h) and
ue|(h,�), shown as functions of the distance between the surfaces of
the nanotubes, δh ) h - 2RT (a) and coordinate along the �-axis (b).
In panel a, the potential densities for semi-infinite nanotubes, ue|(h,�),
are shown for several values of � as marked by curves 1-5: (1) � )
-rc ) -10.2 Å, (2) � ) -3 Å, (3) � ) -2 Å, (4) � ) 0, and (5) � )
2 Å. The value of the equilibrium distance between the surfaces of
infinitely long nanotubes, δh0, is given in panel a. In panel b, the
distributions of ue|(h,�) are shown for several values of δh as marked
by curves 1-7: (1) δh ) 2.45 Å, (2) δh ) 2.60 Å, (3) δh ) 2.70 Å,
(4) δh ) 2.80, (5) δh ) 2.90 Å, (6) δh ) 3.15 Å, and (7) δh ) 3.40
Å.
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surface area is dS ) 2πRTd�. The potential of the interaction
between the surface of the slice and the infinitely long nanotube
can be written as dUS∞ ) u∞(h,R,�) d�. If we rotate the slice
around its center so that the axis of the slice becomes parallel
to the axis of the nanotube, then the new slice-tube potential
density can be expressed through the potential density for
parallel nanotubes:

where [h2 + (� sin R)2]1/2 is the distance from the center of the
slice to the axis of the nanotube. If angle R is small, the rotation
of the slice does not affect significantly the slice-tube interac-
tion and the modified potential density given by eq 11 can be
used to provide an approximation for the interaction potential,
dUS∞ ≈ uj∞(h,R,�) d�.

The quality of the approximation of the true potential density,
u∞(h,R,�), by the potential density for the rotated slice, uj∞(h,R,�),
can be assessed from Figure 4, where the distributions of the
potential densities along the �-axis are shown for (10,10) single-
walled CNTs. As expected, the quality of the approximation of
u∞(h,R,�) by uj∞(h,R,�) is very good for small angles, R e 10°,
and gradually deteriorates as R approaches 90°.

The discrepancy between u∞(h,R,�) and uj∞(h,R,�) becomes
smaller with a decrease in the nanotube radius and the ratio of
these two functions approaches unity in the limit of infinitely
thin nanotubes (RTf 0). For nanotubes of finite radii, the quality
of the approximation of the potential density at large angles
can be improved by taking advantage of the fact that the
distributions of uj∞(h,R,�) are qualitatively similar to the distribu-
tions of u∞(h,R,�) for any h and R, Figure 4. This observation
can be used to significantly improve the quantitative agreement
between the true and approximate potential densities by
introducing two scaling functions, Γ(h,R) and Ω(h,R), that scale
the magnitude of function uj∞(h,R,�) and its argument �,
respectively. The new approximate potential density, ũ∞(h,R,�),
can then be written in the following form:

The choice of the scaling functions Γ(h,R) and Ω(h,R) can
be based on matching the locations of the minima of the true
and approximate potential densities as well as their values at
the minima. For any distance h and angle R satisfying conditions
2RT < h < 2RT + rc and sin R * 0, each of the functions
u∞(h,R,�) and uj∞(h,R,�) has either one minimum or two minima
symmetrical with respect to � ) 0. The presence of these minima
is the direct consequence of the existence of the potential well
in the interatomic potential �(r). In the case of the approximate
potential density given by eq 11, uj∞(h,R,�), the transition from
one minimum to two minima occurs precisely at δh ) δh0 (one
minimum for δh g δh0 and two minima for δh < δh0). For the
true potential density, u∞(h,R,�), the transition is defined by both
h and R. For example, in Figure 4c, the distributions of u∞(h,R,�)
for R ) 10° and R ) 30° have only one minimum, while the
distribution plotted for R ) 90° has two minima (see inset in
Figure 4c). We find, however, that for (10,10) single-walled
CNTs all distributions have two minima at δh < δh0 ) 3.144
Å and one minimum at δh g 3.159 Å, regardless of R. Thus,
the dependence of the transition on R is realized in a rather
narrow range of δh and the transition criterion δh ) δh0 can
still be used for u∞(h,R,�) as a rough approximation. The
requirement to match the locations and values of the true and
approximate potential densities at their minima is found to
ensure a good agreement between the potential densities at
arbitrary �. The scaling functions Γ(h,R) and Ω(h,R) in eq 12
can then be determined from the minima-matching condition,
�̃(min)(h,R) ) �(min)(h,R) and ũ∞(h,R,�(min)(h,R)) )
u∞(h,R,�(min)(h,R)), as follows:

where �(min)(h,R), �j(min)(h,R), and �̃(min)(h,R) are the locations of
minima of functions u∞(h,R,�), uj∞(h,R,�), and ũ∞(h,R,�), re-
spectively. To simplify the notation, in the cases when two
symmetrical minima are present, we consider the left minimum,
so that �(min), �j(min), and �̃(min) are all negative.

Scaling functions Γ(h,R) and Ω(h,R) can be calculated prior
to simulations using the direct numerical evaluation of integrals
defining u∞(h,R,�) and u∞|(h), and then stored in two-
dimensional tables. For any particular type of nanotubes,
however, it is also possible to come up with analytical
approximations of the scaling functions that would eliminate
the necessity to use the two-dimensional tables. The analytical
approximations should define non-negative periodic (with
respect to angle R) functions that provide a good description of
the numerical values given by eq 13 and satisfy the following
conditions

These conditions ensure that the approximate potential density
ũ∞(h,R,�) and its derivative match the true density u|∞(h) and
its derivative in the case when the segment and the nanotube
are parallel to each other.

Figure 3. Schematic sketch illustrating the interaction between an
infinitely long nanotube 2 located on the η-axis and an infinitesimally
thin slice of a nanotube 1 located on the �-axis. The side and top views
are shown in panels a and b, respectively. The distance from the center
of the slice to the axis of nanotube 2 is equal to [h2 +(� sin R)2]1/2.

uj∞(h,R, �) ) u∞|
(√h2 + (� sin R)2) (11)

ũ∞(h,R, �) ) Γ(h,R)u∞|
(√h2 + (�Ω(h,R) sin R)2)

(12)

Γ(h,R) )
u∞(h,R, �(min)(h,R))

uj∞(h,R, �̄(min)(h,R))
,

Ω(h,R) ) {1, �(min)(h,R) ) 0;

�̄(min)(h,R)

�(min)(h,R)
, �(min)(h,R) < 0 (13)

Γ(h,R) ) Ω(h,R) ) 1,
∂Γ
∂R

(h,R) ) ∂Ω
∂R

(h,R) ) 0 for sin R ) 0 (14)
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The search for analytical approximations for the scaling
functions Γ(h,R) and Ω(h,R) involves numerical calculation of
the true potential density u∞(hi,Rj,�) for a large two-dimensional
grid of points (hi,Rj), identification of the positions of minima
and calculation of the corresponding values of
u∞(hi,Rj,�min(hi,Rj)) for each point, and evaluation of the scaling
functions Ωi,j and Γi,j directly from eq 13. Analytical or
semianalytical approximations of functions Γ(h,R) and Ω(h,R)
can then be found by fitting to the values of Ωi,j and Γi,j.

Using the approach described above, a simple semianalytical
form of the scaling functions has been found for single-walled
CNTs with radii RT ranging from 3.392 to 13.570 Å, which
correspond to (5,5) and (20,20) nanotubes, respectively. This
range covers the typical radii of single-walled CNTs produced
by chemical vapor deposition,10 high pressure carbon monoxide
conversion (HiPco),40 and laser ablation.2,40 The scaling functions
that provide a good fit to the numerical values obtained with
eq 13 have the following form:

where Γ⊥(h) ) Γ(h,π/2) is the scaling function for the nanotubes
that are perpendicular to each other and CΩ is a constant. The
dependence of Ω(h,R) on h is found to be weak and is neglected

in eq 16. The functions defined by eqs 15 and 16 satisfy the
conditions given by eq 14. Formally, eqs 15 and 16 can be
considered as three-term Taylor series expansions of even
functions Γ(h,R) and Ω-1(R) into power series of sin R.
However, as shown below, in contrast to the expectation for
the Taylor expansion, these relationships provide good ap-
proximations of the functions defined by eq 13 not only for
small sin R but for any angles between the interacting nanotubes.

The scaling function for perpendicular nanotubes, Γ⊥(h), is
determined in a two-step fitting procedure. First, a table of
values of Γ⊥(h) is calculated for a given RT using eq 13, i.e.,
Γ⊥(h) ) u∞(h,π/2,�min(h,π/2))/uj∞(h,π/2,�jmin(h,π/2)), where u∞(h,
π/2,�min(h,π/2)) is found by direct numerical integration. Second,
the cubic spline interpolation47 is used to obtain a continuously
differentiable function passing through each of the values in
the table. The values of Γ⊥(h) used in the interpolation along
with the corresponding spline curves are shown in Figure 5 for
(5,5), (10,10), and (20,20) single-walled CNTs. One can see
that values of Γ⊥(h) increase with increasing RT (formally, Γ⊥(h)
f 1 when RT f 0), and the slopes of the curves change in an
abrupt manner at distances around the equilibrium intertube
separation, i.e., at δh ≈ δh0. The shape of Γ⊥(h) is relatively
simple and can be further approximated by an analytic relation-
ship; e.g., as a rough approximation, Γ⊥(h) can be represented
by two lines intersecting at δh ≈ δh0. All calculations reported
in this paper, however, are performed with the spline ap-
proximation of Γ⊥(h) shown in Figure 5.

Figure 4. Distributions of true and approximate potential densities along the �-axes calculated for (10,10) single-walled CNTs (RT ) 6.785 Å) for
different values of h and R. The true potential density, u∞(h,R,�), is shown by thick solid curves, the approximation given by eq 11, uj∞(h,R,�), is
shown by thin solid curves, and the approximation given by eq 18, ũ∞(h,R,�), is shown by dashed curves. The values of h correspond to the
following distances between the surfaces of the nanotubes: (a) δh ) h - 2RT ) 2.20 Å, (b) δh ) 2.45 Å, and (c) δh ) 3.15 Å. In most cases shown
in the figure, the dashed curves visually coincide with the thick solid ones. The inset in panel c shows an enlarged view of the curves for R ) 90°
in the vicinity of � ) 0. Two shallow minima at � ) (0.42 Å in the distribution of the true potential density u∞(h,R,�) at R ) 90° can be clearly
identified in the inset. The distributions of u∞(h,R,�) at R ) 10° and R ) 30° have a single minimum each at � ) 0.

Γ(h,R) ) 1 + [Γ⊥(h) - 1] sin2 R (15)

Ω(R) ) 1

1 - CΩ sin2 R
(16)
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The values of the constant CΩ in eq 16 can be found for
various RT numerically, e.g., using the square-root method to
find the best agreement between Ωi,j calculated with eq 13 and
the values predicted by eq 16. The result of the calculation of
CΩ for (5,5), (10,10), and (20,20) single-walled CNTs is shown
in Figure 6 by square symbols. The value of CΩ exhibits a weak
increase with RT which, within the range of radii considered in
this work, can be well described by a simple analytical function,

This function is plotted in Figure 6 by the solid curve. The
approximation given by eq 17 satisfies the condition that requires
CΩ to vanish when RT approaches zero, suggesting that eq 17
is likely to be appropriate for nanotubes with radii smaller than
the radius of the (5,5) single-walled CNT.

Using the approximations of the scaling functions given by
eqs 15 and 16, the final form of the approximate potential
density can be written as follows:

The distributions of the approximate potential density
ũ∞(h,R,�), calculated for (10,10) single-walled CNTs with fitting
functions given by eqs 15 and 16, are shown in Figure 4 by
dashed curves. The quantitative agreement between this simple
approximation and the true potential density is surprisingly good,
so that ũ∞(h,R,�) can be used for the analysis of properties of
the true potential density u∞(h,R,�). In particular, the positions
of the minima of u∞(h,R,�) can be estimated from eq 18 as
follows: �min(h,R) ≈ ((h0

2 - h2)1/2/(Ω(R) sin R) for h < h0 and
�min(h,R) ) 0 for h g h0.

The design of the approximation of the potential density given
by eq 18 (or its generalization in the form of eq 12) is the key
result of this paper. With the help of two tabulated one-
dimensional functions, u∞|(h) and Γ⊥(h), this equation allows
for a straightforward and computationally efficient calculation
of the potential density for an arbitrary relative orientation of
an infinitely long nanotube and a segment.

By inserting the approximation for the potential density
ũ∞(h,R,�) into eq 8, one can obtain an approximate potential
describing the interaction of a CNT segment with an infinitely
long nanotube. For the case of nonparallel CNTs (sin R * 0),
the approximate interaction potential can be written as

Introducing a new variable 	j ) �Ω(R) sin R, one can rewrite
eq 19 in the following form:

The function given by eq 21 can be split into two two-
dimensional functions:

where sgn(	) is the sign function and the lower limit of the
integral in eq 23 is introduced to ensure that function u∞| is
defined in the whole range of the integration. The potential
density u∞| is not defined for arguments that are smaller than
2RT, when the surfaces of the interacting nanotubes intersect
each other. The argument of u∞| in eq 23 is always larger than
2RT if h > 2RT. In this case, the integral in eq 23 is defined for
any possible values of R, �1, and �2, and 	min(h) ) 0 can be
used.

Figure 5. Scaling function for nanotubes perpendicular to each other,
Γ⊥(h), as a function of the distance between the surfaces of nanotubes,
δh ) h - 2RT. The values shown by symbols are calculated using eq
13 with R ) π/2 for (5,5), (10,10), and (20,20) single-walled CNTs.
The curves show the result of cubic spline interpolation between the
calculated points.

Figure 6. Parameters CΩ and CΘ of scaling functions given by eqs 16
and 35, respectively. The parameters are calculated for (5,5), (10,10),
and (20,20) single-walled CNTs, with values shown in the figure. The
solid and dashed curves show approximations of the dependences of
the parameters on the nanotube radius given by eqs 17 and 36,
respectively.

CΩ(RT) ) 0.275(1 - 1
1 + 0.59RT

) (17)

ũ∞(h,R, �) ) Γ(h,R)u∞|
(√h2 + (�Ω(R) sin R)2)

(18)

ŨS∞(h,R, �1, �2) ) ∫�1

�2 ũ∞(h,R, �) d� )

Γ(h,R)∫�1

�2 u∞|
(√h2 + (�Ω(h,R) sin R)2) d� (19)

ŨS∞(h,R, �1, �2) )
Γ(h,R)

Ω(R) sin R
I(h, �1Ω(R) sin R, �2Ω(R) sin R) (20)

I(h, 	1, 	2) ) ∫	1

	2 u∞|
(√h2 + 	̄2) d	̄ (21)

I(h, 	1, 	2) ) Φ(h, 	2) - Φ(h, 	1) (22)

Φ(h, 	) ) ∫sgn(	)	min(h)

	
u∞|

(√h2 + 	̄2) d	̄ )

sgn(	)∫	min(h)

|	|
u∞|

(√h2 + 	̄2) d	̄ (23)
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In the case when h < 2RT, however, the existence of the
integral in eq 23 can only be ensured by a proper choice of
	min(h) > 0. With the convention used to define the directions
of the axes in Figure 1a, the case h < 2RT may occur only if �2

g �1 > 0. Therefore, the values of arguments 	1 and 	2 of
function I(h,	1,	2) in eq 20 have the same sign, so that the
integration interval in eq 21 does not include the point 	j ) 0.
This enables introduction of a continuously differentiable
function 	min(h) that satisfies, for any given h, the condition [h2

+ 	min
2 (h)]1/2 > 2RT. To enable the design of function 	min(h)

and to ensure that this function does not exceed the minimum
possible values of |	| in eq 23, a small positive constant ∆ is
introduced to limit the function 	min(h) from above, [h2 +
	min

2 (h)]1/2 < 2RT + ∆. Physically, the latter condition implies
that configurations where surfaces of the segment and the
nanotube are very close to each other (and have a very high
interaction energy) are not considered. Taken together, the
requirements for the design of the function 	min(h) can be
formulated as follows:

The function 	min(h) is not unique and can be chosen in various
ways. An example of function 	min(h) that satisfies the above
conditions is given in section S1 of the Supporting Information.

The final computationally efficient expression of the ap-
proximate interaction potential can be obtained by inserting eq
22 into the right part of eq 20:

The approximate interaction potential given by eq 25 is
expressed through two-dimensional functions Γ(h,R) and Φ(h,	)
and one-dimensional function Ω(R). The function Φ(h,	) can
be calculated for an arbitrary h and 	 by numerical integration
of eq 23, whereas the scaling functions Γ(h,R) and Ω(R) can
be evaluated using semianalytical expressions designed for a
particular type of nanotubes, e.g., eqs 15 and 16. The values of
these functions can be recorded in one- and two-dimensional
tables, enabling even more efficient evaluation of the interaction
potential in a dynamic simulation of a large number of
interacting CNTs (e.g., section 4) by an interpolation of the
tabulated values. Some practical considerations related to the
numerical implementation of the interaction potential defined
by eq 25 are discussed in section S1 of the Supporting
Information.

The range of applicability of eq 25 does not include the case
of parallel nanotubes, as the right part of this equation has an
indeterminate form for sin R * 0. By applying l’Hôpital’s rule
and taking into account conditions given by eq 14, however,
one can prove that

This means that eq 25 approaches correct values given by eq 9
in the limit of parallel nanotubes.

The quality of the approximation given by eq 25 with scaling
functions taken in the form of eqs 15 and 16 can be assessed
from Figure 7, where the true potential US∞(h,R,�1,�2) evaluated
through the direct integration of eq 3 is compared with the
approximate potential ŨS∞(h,R,�1,�2). The interaction potentials
are plotted as functions of angle R for fixed coordinates of the
nanotube segment (�1 ) -10 Å, �1 ) 10 Å) and several values
of intertube distance h and nanotube radius RT. The dependence
of the true potential on R is sensitive to the intertube distance
and can be quite complex. In particular, as the distance h
changes, the angle R that corresponds to local minima of energy
spans the range from parallel to perpendicular orientations of
the segment and the nanotube. All of the peculiarities of the
angular dependences of the true potential, however, are well
reproduced by the approximate potential. Although the discrep-
ancy between the approximate and true potentials |ŨS∞ - US∞|
tends to increase with increasing radius of the nanotubes, the
approximation remains fairly accurate in the range of RT

considered in the parametrization; e.g., |ŨS∞ - US∞| is less than
5% for the data shown in Figure 7. The discrepancy can be
further reduced by fine-tuning of the parametrization for a
particular type of nanotubes or by a more elaborate design of
scaling functions. For example, an alternative set of more
complicated scaling functions introduced in ref 48 is found to
provide a slightly better accuracy of the representation of the
true potential. Nevertheless, the accuracy achieved with simple
scaling functions given by eqs 15 and 16 is likely to be sufficient
for the majority of applications of the potential, e.g., for
computational analysis of the dynamic behavior of large
ensembles of nanotubes illustrated in section 4.

2.3. Potential USe for Interaction of a CNT Segment with
a Semi-Infinite CNT. The approximate interaction potential for
a nanotube segment and an infinitely long CNT, discussed in
the previous section, is capable of describing intertube interac-
tions that do not involve ends of the nanotubes. To complete
the interaction model and to account for any possible spatial
arrangement of finite-length CNTs, a computationally efficient
approximation of the potential describing the interaction between
a nanotube segment and a semi-infinite nanotube, eq 5, is
considered next. The logic and basic steps used in the design
of the approximate potential for a semi-infinite nanotube,
ŨSe(h,R,�1,�2,ηe), are similar to the ones used in the previous
section for the case of an infinitely long nanotube.

Similar to eq 8 for US∞(h,R,�1,�2), USe(h,R,�1,�2,ηe) can be
represented in the form of an integral of the potential density
along the axis of the segment

where ue(h,R,�,ηe) is the potential density created due to the
interaction with a semi-infinite nanotube.

In the case of parallel nanotubes, it is convenient to place
the origin of the Cartesian coordinates so that the axis Ox goes
through the end of the semi-infinite nanotube (Figure 1b). This
eliminates the dependence of the potential density on ηe and
reduces eq 27 to

where

2RT < √h2 + 	min
2(h) < 2RT + ∆, if h < 2RT + ∆;

	min(h) ) 0, if h g 2RT + ∆
(24)

ŨS∞(h,R, �1, �2) )
Γ(h,R)

Ω(R) sin R
[Φ(h, �2Ω(R) sin R) -

Φ(h, �1Ω(R) sin R)] (25)

lim
sinRf0

ŨS∞(h,R, �1, �2) ) US∞|(h, �1, �2) (26)

USe(h,R, �1, �2, ηe) ) ∫�1

�2 ue(h,R, �, ηe) d� (27)

USe|(h, �1, �2) ) ∫�1

�2 ue|(h, �) d� (28)
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is the potential density created in a nanotube oriented along
the �-axis by a parallel semi-infinite nanotube oriented along
the η-axis. The distance between points on the surfaces of the
nanotubes can be calculated in this case as r(h,�,φ1,η,φ2) ) [(h
+ RT(cos φ2 - cos φ1))2 + RT

2(sin φ2 - sin φ1)2 +(η - �)2]1/2.
To illustrate the dependence of the potential density ue|(h,�)

on the geometric parameters, the results of numerical integration
of eq 29 for (10,10) single-walled CNTs are shown in Figure 2
for several fixed values of h and �. At negative � (curves 1-3
in Figure 2a), the density ue|(h,�) exists for any h g 0, which
is different from u∞|(h) that is defined only for h g 2RT. At �
< -rc, the value of ue|(h,�) is zero for any h, whereas, at � g
rc, the density distribution ue|(h,�) is independent of � and
coincides with the one shown in Figure 2a for u∞|(h). The
distributions of ue|(h,�) along � (Figure 2b) are monotonous
for δh > 2.94 Å, when the attraction dominates the interaction
between the CNT slice and the semi-infinite CNT. For δh <
2.94 Å, on the other hand, the distribution attains a more
complex shape, with a minimum and a maximum appearing
due to the changes in the relative contributions of the attractive
and repulsive interactions as the position of the slice � passes
in the proximity of the nanotube end. The threshold value of
δh ) 2.94 Å for the appearance of extrema on the distributions
shown in Figure 2b corresponds to the separation that yields
zero interaction energy for two slices located in the same plane
(i.e., slices of parallel nanotubes at � ) η).

Similar to eq 11, for small angles R (R e 10°), the potential
density ue(h,R,�,ηe) can be approximated by considering slices
of the nanotube segment rotated to orient them parallel to the
semi-infinite nanotube (see section 2.2 for a detailed discussion):

where [h2 + (� sin R)2]1/2 is the distance from the center of the
slice to the axis of the semi-infinite nanotube and � cos R - ηe

is the distance between the nanotube end and the projection of
the center of the slice on the axis of the nanotube (Figure 8).
The quality of the approximation of the true potential density
ue(h,R,�,ηe) by the potential density of the rotated slices
uje(h,R,�,ηe) deteriorates as angle R increases. Nevertheless,
similar to the potential density for an infinitely long nanotube,
an introduction of scaling function can ensure that the difference
between the approximate and true potential densities remains
small at any angles. Out of a variety of ways the scaling
functions can be introduced, below we consider an approach
that makes use of the scaling functions already introduced in
section 2.2. With the use of scaling functions Γ(h,R) and Ω(R)
defined by eqs 15 and 16, the next approximation of the potential
density can be written as

Figure 7. True and approximate potentials for interaction between an infinitely long single-walled CNT with a nanotube segment. The true potential
US∞(h,R,�1,�2) (solid curves, eqs 3 and 6) and the approximate potential ŨS∞(h,R,�1,�2) (dashed curves, eq 25) are shown as functions of angle R
for constant coordinates of the segment ends (�1 ) -10 Å, �2 ) 10 Å) and three distances between the surfaces of the nanotubes: (a) δh ) h -
2RT ) 2.20 Å, (b) δh ) 2.45 Å, and (c) δh ) 3.15 Å. Curves 1-3 are shown for (5,5), (10,10), and (20,20) single-walled CNTs, respectively. In
panel a, the solid and dashed curves visually coincide with each other.

ue|(h, �) )

nσ
2RT

2 ∫0

2π ∫0

+∞ ∫0

2π
�(r(h, �, φ1, η, φ2)) dφ2 dη dφ1 (29)

uje(h,R, �, ηe) ) ue|(√h2 + (� sin R)2, � cos R - ηe)
(30)

uje*(h,R, �, ηe) )

Γ(h,R)ue|(√h2 + (�Ω(R) sin R)2, � cos R - ηe) (31)
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The quality of this approximation can be assessed from Figure
9, where the true, ue(h,R,�,ηe), and approximate, uje*(h,R,�,ηe),
potential densities are plotted for (10,10) single-walled CNTs
by thick and thin solid curves, respectively. The distributions
of the potential density created by the interaction with a semi-
infinite nanotube are more complicated as compared to the case
of an infinitely long nanotube (Figure 4). In particular, the
distributions of ue(h,R,�,ηe) along the �-axis are no longer
symmetric with respect to the center of coordinates (� ) 0) for
any angle except for the case of perpendicular nanotubes.
Moreover, a variation of h, R, or ηe results in qualitative changes
in the shapes of the curves. Despite the complexity of the
dependence of the potential density on the geometric parameters,
the approximation given by eq 31 provides a fairly accurate
description of the true density.

The quality of the approximation can be further improved
by introducing an additional scaling function into eq 31. Similar
to the design of scaling functions Γ(h,R) and Ω(R) described
in section 2.2, the additional scaling function can be chosen on
the basis of a condition requiring matching the values of the
true and approximate potential densities in their minima. It is
possible to use this condition, since distributions of uje*(h,R,�,ηe)
and ue(h,R,�,ηe) along � at sin R * 0 have at least one local
minimum (e.g., see Figure 9), where they take values
uj(min)* (h,R,ηe) and u(min)(h,R,ηe), respectively. In the case when
functions have several local minima, we apply the minima-
matching condition to the minimum corresponding to smallest
�. The scaling function is applied to coordinate ηe, so that the
scaled coordinate ηje ) ηje(h,R,ηe) is found from the following
condition: uj(min)* (h,R,ηje) ) u(min)(h,R,ηe). The approximate
potential density can then be reformulated as follows:

where the new scaling function Θ(h,R,ηe) is defined as

Similar to functions Γ(h,R) and Ω(h,R), it is not necessary
to calculate the values of Θ(h,R,ηe) by direct evaluation of eq
33. Instead, Θ(h,R,ηe) can be approximated by a positive,
bounded, and periodic (with respect to angle R) function
satisfying the following conditions:

The conditions given by eq 34 ensure that, in the case when
the nanotube segment and the semi-infinite nanotube are parallel
to each other, eq 32 reduces to the one for the potential density
for parallel nanotubes, ũe(h,R,�,ηe) ) ue|(h,� - ηe), whereas
forces and torques calculated with the approximate potential
density are equal to the ones calculated with the true potential
density. The condition that Θ(h,R,ηe) is a positive bounded
function ensures that

An analytical approximation of the scaling function Θ(h,R,ηe)
for single-walled CNTs of a given radius RT is obtained as
follows. The true potential density ue(hi,Rj,�,ηek) is first calcu-
lated as a function of � for a large three-dimensional grid of
parameters (hi,Rj,ηek) by direct numerical integration. The values
of the scaling function, Θi,j,k ) Θ(hi,Rj,ηek), are then determined
at each point of the grid by matching the minima of the true
and approximate potential density functions, eq 33. Analysis
of the results of the calculations performed for single-walled
CNTs with radii ranging from 3.392 to 13.570 Å suggests that
the dependence of Θ(h,R,ηe) on h and ηe is relatively weak and
can be neglected. Moreover, the following simple function is
found to provide a good description of the numerical values
and satisfaction of the conditions given by eq 34:

where CΘ is a constant for a given radius of nanotubes. The
values of CΘ can be found for different RT numerically, e.g.,
using the square-root method to find the best agreement between
the values Θi,j,k determined as described above and the corre-
sponding values given by eq 35. For the nanotubes considered
in this work (RT ranges from 3.392 to 13.570 Å), the values of
CΘ (shown by circular symbols in Figure 6) can be approximated
by a linear dependence on RT:

This linear dependence is shown in Figure 6 by a dashed line.
In contrast to eq 17, this approximation of CΘ(RT) does not
satisfy the condition of limRTf0 CΘ(RT) ) 0 which is required
to ensure the agreement between the true and approximate
potential densities in the limit of infinitely thin nanotubes.
Therefore, the applicability of eq 36 for nanotubes with radii
smaller than the radius of the (5,5) CNT is questionable.

Using the approximation of the scaling function given by eq
35, the final form of the approximate potential density can be
written as follows:

Figure 8. Schematic sketch illustrating the interaction between a semi-
infinite nanotube 2 located on the η-axis and an infinitesimally thin
slice of a nanotube 1 located on the �-axis. The side and top views are
shown in panels a and b, respectively. The location of the center of
the slice with respect to nanotube 2 can be characterized by distances
[h2 + (� sin R)2]1/2 and � cos R - ηe.

ũe(h,R, �, ηe) )

Γ(h,R)ue|(√h2 + (�Ω(R) sin R)2, � cos R - Θ(h,R, ηe)ηe)
(32)

Θ(h,R, ηe) ) {1, ηe ) 0;
η̄e(h,R, ηe)

ηe
, ηe * 0 (33)

Θ(h,R, ηe) ) 1 and
∂Θ
∂R

(h,R, ηe) ) 0 for sin R ) 0

(34)

lim
ηef+∞

ũe(h,R, �, ηe) ) 0 and

lim
ηef-∞

ũe(h,R, �, ηe) ) ũ∞(h,R, �)

Θ(h,R, ηe) ) Θ(R) ) 1 - CΘ sin2 R (35)

CΘ(RT) ) 0.35 + 0.0226(RT - 6.785) (36)
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The distributions of the approximate potential density
ũe(h,R,�,ηe), predicted with eq 37 for (10,10) single-walled
CNTs, are shown in Figure 9 by dashed curves. A comparison
of these approximate distributions with the true potential density
distributions demonstrates a substantial improvement in the
quality of approximation achieved by the introduction of the
additional scaling function Θ(R). The improvement is particu-
larly notable for ηe > 0, where the approximation given by eq
31 shows substantial deviations from the true potential density.

The approximation for the potential density given by eq 37
can be used in eq 27, resulting in the following formulation of

an approximate potential describing the interaction of a CNT
segment with a semi-infinite nanotube:

The integral in eq 38 cannot be easily expressed through one-
and two-dimensional functions of the geometric parameters and
has to be calculated by numerical integration of the potential
density along the segment axis. In this work, we use the
following simple method of numerical integration. The segment

Figure 9. Distributions of true and approximate potential densities along the �-axes calculated for (10,10) single-walled CNTs (RT ) 6.785 Å) for
different values of h, R, and ηe. The true potential density, ue(h,R,�,ηe), is shown by thick solid curves, the approximation given by eq 31, uje*(h,R,�,ηe),
is shown by thin solid curves, and the approximation given by eq 37, ũe(h,R,�,ηe), is shown by dashed curves. The values of h correspond to the
following distances between the surfaces of the nanotubes: (a,b,c) δh ) h - 2RT ) 3.15 Å, (d,e,f) δh ) 2.45 Å. The values of R are (a,d) R ) 10°,
(b,e) R ) 30°, (c,f) R ) 90°. Curves 1-4 are shown for ηe ) -15 Å, ηe ) -5 Å, ηe ) 5 Å, and ηe ) 15 Å, respectively.

ũe(h,R, �, ηe) )

Γ(h,R)ue|(√h2 + (�Ω(R) sin R)2, � cos R - Θ(R)ηe) (37)

ŨSe* (h,R, �1, �2, ηe) ) ∫�1

�2 ũe(h,R, �, ηe) d� )

Γ(h,R)∫�1

�2 ue|(√h2 + (�Ω(R) sin R)2, � cos R - Θ(R)ηe) d�

(38)

Mesoscopic Interaction Potential for CNTs J. Phys. Chem. C, Vol. 114, No. 12, 2010 5523



of the nanotube oriented along the �-axis and interacting with
the semi-infinite nanotube is divided into N� - 1 equal
subsegments of length ∆�, with the ends of the subsegments
defined as

The approximate interaction potential ŨSe can then be calculated
by applying, e.g., the trapezoidal rule to the integral in eq 38:

where

The interaction potential ŨSe given by eq 39 is expressed
through two-dimensional functions Γ(h,R) and ue|(h,�) and one-
dimensional functions Ω(R) and Θ(R). Similar to the potential
for the interaction with an infinitely long nanotube, eq 25, the
efficiency of the evaluation of ŨSe can be improved by tabulating
the values of the functions used in the calculation and using an
interpolation of the tabulated values in the course of a dynamic
simulation involving a large number of nanotubes (see section
4).

The result of the calculation of the approximate potential
ŨSe(h,R,�1,�2,ηe) for (5,5), (10,10), and (20,20) single-walled
CNTs is shown and compared with the true potential
USe(h,R,�1,�2,ηe) in Figure 10. The potentials are plotted as
functions of the position of the end of the semi-infinite nanotube
for fixed coordinates of the nanotube segment (�1 ) -10 Å, �1

) 10 Å) and several values of intertube distance h and angle
R. The number of points N� used in the numerical integration
in eq 39 is equal to 100. The values of ŨSe obtained with N� )
10, however, are found to be very close to the ones shown in
the figure. The approximate potential ŨSe is found to provide a
good quantitative approximation for USe in the entire range of
geometric parameters and nanotube radii considered in this
study. The maximal discrepancy between the approximate and
true potentials, |ŨSe - USe|, is less than 6% for the data shown
in Figure 10.

The shapes of the curves shown in Figure 10 vary gradually
with angle R and the radius of the nanotube but remain
qualitatively similar for a fixed intertube separation. All of the
curves calculated for δh ) 2.45 Å have a maximum at ηe < 0
and a minimum at ηe > 0, Figure 10a-c. The positions of the
minimum and maximum shift to ηe ≈ �2 and ηe ≈ -�2,
respectively, as the segment and the nanotube align with each
other and become parallel (curve 1). In the case of parallel
nanotubes, the presence of the extrema is a direct consequence
of the presence of the corresponding extrema in the distributions
of the potential density for parallel nanotubes shown in Figure
2b (curves 1-5). For larger separations, e.g., δh ) 3.15 Å in
Figure 10d-f, the attraction between the nanotube and the
segment plays the dominant role and the potential exhibits a

monotonous decrease as the segments are moved in the positive
direction of the η-axis. For parallel nanotubes, this behavior of
the potential corresponds to the monotonous variation of the
potential density in Figure 2b (curves 6 and 7).

2.4. Radius-Independent Form of the Tubular Potential.
The approximate tubular potential defined by eqs 25 and 39 is
capable of computationally efficient description of nonbonding
interactions between nanotubes of arbitrary length and orienta-
tion. All of the parameters of the potential are defined by the
interatomic potential �(r), surface density of atoms nσ, and
radius of nanotubes RT. The explicit dependence of the potential
on the radius of nanotubes can be considered as a shortcoming
of the potential, as it is necessary to generate separate tables of
two-dimensional functions Φ(h,	) and ue|(h,�) for every par-
ticular radius of nanotubes of interest.

The fact that the shapes of the dependences of potentials ŨS∞
and ŨSe on different geometric parameters (Figures 7 and 10)
remain qualitatively similar for nanotubes of different radii,
however, suggests that it may be possible to reformulate the
potentials in a form where the radius dependence is accounted
for analytically and the two-dimensional tables are built for
reduced radius-independent geometrical parameters. Indeed, it
has been demonstrated in refs 26 and 27 that it is possible to
design an approximate interaction potential for parallel infinitely
long nanotubes in terms of reduced parameters that make the
potential to be independent of the radius of the nanotubes.
Following this idea, the potentials ŨS∞ and ŨSe can be
reformulated (without any additional approximations) in terms
of tabulated functions that are independent of RT. Such a
reformulation is possible for interatomic potentials that can be
expressed in the form of a linear combination of homogeneous
functions, such as �(r) ) �(n)(r) - �(m)(r), where �(k)(ar) )
a-k�(k)(r) and k ) n,m. The Lennard-Jones potential without a
cutoff (i.e., when C(r) ) 1 in eq 1) belongs to this class of
potentials, with �(k)(r) ) 4ε(σ/r)k, where k is equal to 12 and 6.

The potential density for two infinitely long parallel nanotubes
of the same radius RT, given by eq 10, can be rewritten for the
Lennard-Jones interatomic potential without a cutoff in the
following form:

where functions

are independent of the radius of the nanotubes and h′ ) h/RT,
η′ ) η/RT, and r′ ) r/RT. Subsequently, the function Φ(h,	) in
eq 23 can be rewritten in terms of radius-independent functions
as follows:

where

�̄(n) ) �1 + ∆� n, ∆� )
�2 - �1

N� - 1
,

n ) 0, ... , N� - 1

ŨSe(h,R, �1, �2, ηe) ) ∆� Γ(h,R) ×

[ue|(hj(0), ϑ̄(0)) + ue|(hj(N�-1), ϑ̄(N�-1))

2
+ ∑

n)1

N�-2

ue|(hj(n), ϑ̄(n))]
(39)

hj(n) ) √h2 + (�̄(n)Ω(R) sin R)2, ϑ̄(n) ) �̄(n) cos R - Θ(R)ηe

u∞|(h) )
nσ

2

RT
9

f∞(12)( h
RT

) -
nσ

2

RT
3

f∞(6)( h
RT

) (40)

f∞(k)(h') ) ∫0

2π ∫-∞

+∞ ∫0

2π
�(k)(r'(h', φ1, η′, φ2)) dφ2 dη′ dφ1

(41)

Φ(h, 	) )
nσ

2

RT
8
Φ(12)( h

RT
,

	
RT

) -
nσ

2

RT
2
Φ(6)( h

RT
,

	
RT

)
(42)

5524 J. Phys. Chem. C, Vol. 114, No. 12, 2010 Volkov and Zhigilei



The radius-independent functions Φ(k)(h′,	′) can be calculated
with eq 43 only once and then used in the tabulated form
(instead of the radius-dependent function Φ(h,	) given by eq
23) for calculation of the interaction potential for an arbitrary
RT. The dependence of the potential on the radius of nanotubes
is accounted for by scaling of arguments of Φ(k)(h′,	′) and by
radius-dependent coefficients in eq 42, as well as by the radius-
dependent scaling functions Γ(h,R) and Ω(R) in eq 25. A similar

approach can be used to rewrite the potential for semi-infinite
nanotube (ŨSe given by eq 39) in a form where the two-
dimensional function ue|(h,�) is expressed through universal
functions independent of the radius of nanotubes.

As a practical note, the calculation of the potentials expressed
through radius-independent functions/tables requires longer
computer time and more computer memory as compared with
their evaluation in the radius-dependent form. Moreover, the
requirement that the interatomic potential �(r) should be a linear
combination of homogeneous functions prevents the introduction
of a cutoff function that brings the potential �(r) and its
derivatives to zero at a constant cutoff distance rc that is

Figure 10. True and approximate potentials for interaction between a semi-infinite single-walled CNT with a nanotube segment. The true potential
USe(h,R,�1,�2,ηe) (solid curves, eqs 3-5) and the approximate potential ŨSe(h,R,�1,�2,ηe) (dashed curves, eq 39) are shown as functions of the
position of the end of the semi-infinite nanotube, ηe. The calculations are performed for constant values of coordinates of the segment ends (�1 )
-10 Å, �2 ) 10 Å), two distances between the surfaces of the nanotubes, δh ) h - 2RT ) 2.45 Å (a-c) and δh ) 3.15 Å (d-f), and three types
of single-walled CNTs, (5,5) (a,d), (10,10) (b,e), and (20,20) (c,f). Curves 1-4 are shown for R ) 0°, R ) 10°, R ) 30°, and R ) 90°, respec-
tively.

Φ(k)(h', 	′) ) sgn(	′)∫	min′ (h')

|	′|

f∞(k)
(√h'2 + 	̄′2) d	̄′

(43)
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independent of RT. The application of the potential for large-
scale simulations involving large ensembles of nanotubes would
require application of the cutoff directly to the tubular potential
given by eqs 25 and 39, hampering the direct mapping between
the atomistic and mesoscopic potentials.

3. Force and Torque Acting on Nonparallel Nanotubes

The approximate tubular potential introduced in the previous
section enables a straightforward analysis of forces acting on
straight nanotubes interacting with each other. Two examples
considered below are for the interaction between two infinitely
long nanotubes and an infinitely long nanotube and a finite-
length nanotube. Starting with the two infinitely long nanotubes
and considering 0° < R < 180°, the interaction energy Ũ∞∞(h,R),
translational force F∞(h,R), and torque T∞(h,R) (below we
consider the force and torque acting in the direction of the Ox
axis in Figure 1a on the nanotube placed along the η-axis) can
be derived from eq 25:

where

The values and behavior of functions Ψ(h,R) and Λ(h,R) are
largely defined by their last terms, (1/Φ∞) dΦ∞/dh and -cot R,
respectively, with other terms making minor contributions (see
analysis given below for (10,10) CNTs). Therefore, the force
and torque can be approximated by the following simple
equations:

Since the expression Γ(h,R)/(Ω(R) sin R) is positive for any
0° < R < 180°, the direction of the force is defined by the sign
of the derivative dΦ∞/dh. This implies that the direction of the
force is independent of the angle R and, for a given type/radius
of the nanotubes, is uniquely defined by the distance h. The

torque changes its direction at R ) 90°, but for both R < 90°
and R > 90°, the direction of the torque is defined by the sign
of Φ∞(h), i.e., is also uniquely defined by the distance h.

For (10,10) single-walled CNTs, the function Φ∞(h) and its
derivative are plotted in Figure 11. The function Φ∞(h) changes
its sign at δh* ) 2.45 Å (i.e., Φ∞(2RT + δh*) ) 0), while its
derivative changes its sign at δh** ) 2.91 Å. The negative values
of Φ∞(h) at δh > δh* correspond to the negative torque for
0° < R < 90° and positive torque for 90° < R < 180°, which in
both cases acts to align the nanotubes parallel to each other.
The positive values of Φ∞(h) at δh < δh*, on the contrary,
correspond to the torque that acts to orient the nanotubes
perpendicular to each other. Similarly, the translational force
given by eq 50 is positive (repulsive) at δh < δh** and negative
(attractive) at δh > δh**. The observation that δh* < δh** < δh0,
where δh0 ) 3.144 Å is the equilibrium separation of parallel
nanotubes, indicates that in CNT-based materials experiencing
moderate or no external pressure the torque acting on nanotubes
due to intertube interactions would make them align with each
other, providing the driving force for spontaneous self-assembly
of CNTs into bundles observed in experiments.1-3,5-10 At large
values of pressure, however, when typical separation between
nanotubes becomes smaller than δh*, the formation of bundles
can be suppressed, as suggested by the reversed direction of
the torque.

Equation 50 implies that for infinitely long nonparallel
nanotubes (sin R * 0) the equilibrium separation between the
tubes is equal to δh**. For nanotubes that are parallel to each
other (sin R ) 0), on the other hand, the equilibrium separation
is defined by the position δh0 of the minimum of the potential
density u∞|(h) (see dashed curve in Figure 2a). Since δh** *
δh0, the dependence of the equilibrium separation on R has a
singularity at sin R ) 0, which is a consequence of the
corresponding singularity of the potential ŨS∞ (eq 25) applied
to infinitely long nanotubes at �2 ) -�1 f ∞.

The dependences of the force and torque on the angle R,
predicted by eqs 50 and 51, are shown in Figures 12a and 13a
for several intertube separations between two infinitely long
(10,10) single-walled CNTs. Both force and torque are mo-
notonous functions of R, with the magnitudes of the force and
torque increasing with decreasing angle and tend to infinity as
sin R f 0. This behavior is expected, since the interaction
energy of two infinitely long parallel nanotubes is infinity.

To justify the approximations (omission of the first term in
eq 48 and the first two terms in eq 49) used in formulating the

Ũ∞∞(h,R) ) lim
�1f-∞
�2f+∞

ŨS∞(h,R, �1, �2) ) 2
Γ(h,R)

Ω(R) sin R
Φ∞(h)

(44)

F∞(h,R) ) -
∂Ũ∞∞

∂h
) -Ψ(h,R)Ũ∞∞(h,R) (45)

T∞(h,R) ) -
∂Ũ∞∞

∂R
) -Λ(h,R)Ũ∞∞(h,R) (46)

Φ∞(h) ) lim
	f+∞

Φ(h, 	) (47)

Ψ(h,R) ) 1
Γ(h,R)

∂Γ
∂h

+ 1
Φ∞(h)

dΦ∞

dh
(48)

Λ(h,R) ) 1
Γ(h,R)

∂Γ
∂R

- 1
Ω(R)

dΩ
dR

- cos R
sin R

(49)

F∞(h,R) ≈ -2
Γ(h,R)

Ω(R) sin R
dΦ∞(h)

dh
(50)

T∞(h,R) ≈ cot RŨ∞∞(h,R) ) 2
Γ(h,R) cot R
Ω(R) sin R

Φ∞(h)

(51)

Figure 11. Function Φ∞(h) defined by eqs 47 and 23 and its derivative
dΦ∞/dh calculated for (10,10) single-walled CNTs. The distance
between the surfaces of the nanotubes, δh ) h - 2RT, is used as an
argument of the function. The values of the intertube distance, where
Φ∞(h) and its derivative are zero and change their signs, are marked
on the figure as δh* and δh**, respectively.
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simplified expressions for the force and torque given by eqs 50
and 51, the accuracy of the approximations is analyzed here
for data shown in Figures 12a and 13a. The relative differences
between (1/Φ∞) dΦ∞/dh and Ψ(h,R) (and, consequently, be-
tween the values of the force F∞(h,R) predicted by eqs 50 and
45) is less than 5% in the whole range of values of h and R
used in the calculations. The relative differences between -cot R
and Λ(h,R) (and, consequently, between the values of the torque
T∞(h,R) predicted by eqs 51 and 46) is illustrated in the inset in
Figure 13b. The relative difference is less than 5% for R < 50°,
while for larger angles it increases up to ∼15%. The absolute
values of Λ(h,R) and T∞(h,R), however, are close to zero at
large angles, where the relative difference between -cot R and
Λ(h,R) increases. As a result, the dependences predicted by eqs
45 and 46, if shown in Figures 12a and 13a, would visually
coincide with the curves calculated with eqs 50 and 51.

The force and torque acting on an infinitely long nanotube
that interacts with a segment of a finite length L exhibit more
complex dependences on the geometric parameters. If the finite-
length nanotube is positioned symmetrically with respect to the
axis Ox (�1 ) -�2, η1 f ∞, and η2 f ∞ in Figure 1a), the
translational force and the torque can be obtained by differentia-
tion of potential ŨS∞(h,R,�1,�2) given by eq 25:

The dependences of the force and torque on the angle R,
predicted by eqs 52 and 53 for L ) 100 Å, are shown in Figures
12b and 13b. For large R, when the ends of the nanotube are
beyond the cutoff distance for the intertube interaction, the
values of the force and torque coincide with the corresponding
values for infinitely long nanotubes. For smaller angles,
however, the angular dependences start to deviate from the case
of infinitely long nanotubes. For data shown in Figures 12b and
13b, the difference in force and torque predicted for finite (L )
100 Å) and infinitely long nanotubes exceeds 1% at an angle
of about 18°, whereas the same deviation for a 10 times longer
segment (L ) 1000 Å) is observed at a much smaller angle of
2°.

The differences between the angular dependence observed
for the finite and infinitely long nanotubes at small angles in
Figures 12 and 13 are related to the difference in the asymptotic
behavior of the corresponding equations at sin R f 0. The

Figure 12. Translational force acting on an infinitely long (10,10) single-walled CNT (nanotube 2 in the inset) interacting with a CNT of the same
type and length L (nanotube 1 in the inset) shown as a function of the angle R between the nanotubes for several values of the distance between
the surfaces of the nanotubes, δh ) h - 2RT. Nanotube 1 is assumed to be infinitely long in panel a and has a length of L ) 100 Å in panel b. The
inset in panel b shows the side and top views of the geometrical configuration of the system.

Figure 13. Torque acting on an infinitely long (10,10) single-walled CNT (nanotube 2 in the inset in Figure 12b) interacting with a CNT of the
same type and length L (nanotube 1 in the inset in Figure 12b) shown as a function of the angle R between the nanotubes for several values of the
distance between the surfaces of the nanotubes, δh ) h - 2RT. Nanotube 1 is assumed to be infinitely long in panel a and has a length of L ) 100
Å in panel b. The relative position of the nanotubes is shown in the inset in Figure 12b. The inset in panel b shows the relative difference between
function Λ(h,R) defined by eq 49 and its approximation by -cot R.

F(h,R, L) ) -
∂ŨS∞

∂h
(h,R,-L/2, L/2) (52)

T(h,R, L) ) -
∂ŨS∞

∂R
(h,R,-L/2, L/2) (53)
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torque, in particular, approaches zero for a finite-length nanotube
and tends to infinity for the infinitely long nanotube. This leads
to a nonmonotonous dependence of the torque on R observed
for finite-length nanotubes at any intertube separation (Figure
13b). For small distances between the nanotubes, when the
repulsion dominates, the torque acting to misalign the nanotubes
increases at small angles and then drops to zero as sin R f 0.
The parallel orientation of the nanotubes corresponds to a state
of unstable equilibrium in these cases. For intermediate separa-
tions, in the vicinity of δh*, the angular dependence of torque
exhibits a more complex behavior, with both minimum and
maximum present and the direction of torque changing with R.
In these cases, the equilibrium angle (when the torque is zero)
is no longer equal to 0 or 90°; e.g., for δh ) 2.6 Å, it is equal
to 8.6° (Figure 13b). The translational force acting on the finite-
size nanotube tends to finite values at sin R f 0 and can also
exhibit nonmonotonous dependences on R, albeit only for a
narrow range of intertube separations in the vicinity of the
equilibrium separation δh0 (Figure 12b). In contrast to the case
of infinitely long nanotubes, for finite L, the equilibrium distance
between the nanotubes depends on R. The equilibrium distance
approaches δh0 for sin R f 0, and becomes close to δh** for
larger angles and sufficiently large L.

4. Mesoscopic Simulation of Self-Assembly of CNTs into
Bundles

The development of the mesoscopic tubular potential de-
scribed in section 2 opens up a new direction in the computa-
tional analysis of CNT-based materials, with the main area of
prospective applications being in dynamic simulations of
systems consisting of a large number of interacting nanotubes.
To illustrate the ability of the tubular potential to provide a
computationally efficient description of nonbonding interactions
in CNT-based materials, in this section, we present the results
of a simulation of the structural self-organization in a system
containing thousands of interacting nanotubes.

The dynamic simulation is performed with a mesoscopic
model in which nanotubes are represented as chains of cylindri-
cal segments.11 Each segment is defined by coordinates of its
ends (or nodes). The dynamics of a system of interacting CNTs
is described by the equations of motion of classical mechanics
solved for the positions of the nodes. The forces acting on the
nodes are calculated on the basis of the mesoscopic force field
that consists of internal and external parts. The internal part of
the force field accounts for the stretching, bending, and torsional
deformations of individual nanotubes and is described in ref
11. The external part of the force field represents intertube

Figure 14. Snapshots from a constant-volume mesoscopic simulation performed with the tubular potential for a system of 4050 (10,10) single-
walled CNTs. The length of each CNT is 400 nm, the dimensions of the system are 500 nm × 500 nm × 100 nm, and the density of the system
is 0.2 g/cm3. The initial sample shown in panel a is composed of layers of straight randomly dispersed nanotubes. The snapshots taken during the
dynamic simulation are shown for times of 0.5 ns (b), 1 ns (c), and 2 ns (d). The simulation is performed under constant total energy conditions
during the first nanosecond and under constant 300 K temperature at later time. Different colors correspond to different individual CNTs.
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interactions and is described by the tubular potential as briefly
explained below.

The most straightforward approach to using the tubular
potential for calculation of the intertube van der Waals interac-
tion energies and forces would be to apply the potential for
segment-segment interaction USS(h,R,�1,�2,η1,η2) given by eq
7 to every pair of interacting segments. This approach would
involve double evaluation of potential ŨSe for each pair of
segments. The calculation of ŨSe, however, involves numerical
integration of potential density ue| (see eqs 38 and 39) and is
computationally expensive. The computational efficiency of the
calculations can be significantly enhanced if calculation of ŨSe

is replaced, whenever possible, by calculation of ŨS∞. The
evaluation of ŨS∞ with eq 25 does not involve a numerical
integration and can be efficiently performed using prerecorded
tables of functions Γ⊥(h) and Φ(h,	). In order to ensure the
accuracy of the representation of interactions between curved
nanotubes and to improve the total energy conservation in
dynamic simulations, a special weighted approach that accounts
for the local curvatures of the interacting nanotubes is also
developed48,49 and applied in the simulation described below.
The derivation of the equations for forces acting between
nanotubes that interact with each other through the tubular
potential are presented in section S2 of the Supporting Informa-
tion in the form suitable for a straightforward implementation
in a computer code.

The simulation is performed for a system consisting of 4050
(10,10) 400 nm long single-walled CNTs, with each nanotube
represented by 200 segments with an equal equilibrium length
of 2 nm. The initial configuration shown in Figure 14a is
generated by stacking thin layers of straight nanotubes with a
distance between the layers that ensures the interlayer interac-
tion. This method has been found to be capable of producing
systems with a high degree of randomness in CNT positions
and orientations, and with densities as high as 0.6 g/cm3.50 The
dimensions of the computational system used in this work are
500 nm × 500 nm × 100 nm, and the average density is 0.2
g/cm3. The periodic boundary conditions are applied in the
lateral directions (along the x- and y-axes). The volume of the
system is maintained constant during the simulation by two
planes enclosing the CNT film from the two sides in the z
direction and interacting with the nanotubes by a short-range
repulsive potential.

The evolution of the system in the dynamic simulation is
illustrated by the snapshots shown in Figure 14b-d. Although
the velocities of all nodes in the initial configuration are set to
zero, the interaction among nanotubes triggers spontaneous
rearrangement of the configuration to a complex continuous
network of CNT bundles. The formation of bundles reduces
the potential energy of intertube interactions and, as a result,
increases the kinetic energy of the dynamic system. The absence
of the high-frequency atomic vibrations in the model prevents
dissipation of the kinetic energy into the internal energy of the
nanotubes, leading to the fast increase in the “temperature”
associated with the dynamic degrees of freedom of the model
in the dynamic simulation conserving the total energy. In order
to partially account for the dissipation of the kinetic energy
released in the process of self-organization of the nanotubes
into bundles, a temperature control is introduced after the first
nanosecond of the simulation. The temperature of the dynamic
degrees of freedom is maintained in this case at 300 K by scaling
the velocities of the nodes according to the Berendsen thermostat
method51 commonly used in atomistic molecular dynamics
simulations. Despite the significant slowdown of the structural

changes in the system after the first nanosecond, the evolution
of the structure continues under the constant temperature
conditions. The primary direction of the long-term structural
evolution is the coarsening of the bundles, which proceeds by
thin bundles and remaining individual nanotubes joining the
thicker bundles, Figure 14d. The observation of the continuing
changes in the system at the constant-temperature stage of the
simulation is consistent with experimental observations of
relatively large vibrations of CNTs caused by thermal fluctua-
tions at room temperature.52

The structure of the random network of bundles (Figure 15a)
obtained in the simulation is similar to the ones observed in
experimental images of the surface of CNT mats or “bucky
paper”.2,3,5-10 The diameter of CNT bundles in Figures 14d and
15a ranges from 2 to 30 nm with few thicker bundles. By
changing the simulation conditions, structures with smaller and
larger bundles can be obtained in the simulations. The range of
the bundle diameters is consistent with experimental observa-
tions, with the reported ranges of the bundle diameter being
from 5 to 20 nm (ref 1), from 2 to 34 nm (ref 8), from 1 to 30
nm (ref 9), or from 30 to 60 nm (ref 7). A detailed analysis of
the arrangement of individual nanotubes in the network of
bundles reveals several characteristic structural features that can
be more clearly seen in the enlarged view of a section of the
simulated system shown in Figure 15b. These features, also
observed in experimental images,3,6,7,9,10 include splitting of a
thick bundle into two or more thinner ones and interconnections
formed by nanotubes that belong to two different bundles.

Although the packing of nanotubes in bundles just after their
formation is rather irregular, the long-term rearrangement of
nanotubes at 300 K results in a gradual increase of the their
ordering in the bundles, with local hexagonal arrangements
appearing in the cross sections of the bundles, e.g., Figure 15c.
The hexagonal arrangement of CNTs in bundles corresponds
to the minimum of the potential energy of intertube interaction
and has been observed in experiments.1,2 Since the bundles are
highly interconnected with each other and form a continuous
random network, there is a relatively small number of bundles
that end inside the material. This characteristic of the simulated
CNT material is consistent with experiments where the bundles
in CNT network structures are characterized as “truly endless”.53

In the rare cases when bundle ends are observed, however, the
nanotubes constituting such bundles tend to align their ends with
each other. The alignment of CNT ends reduces the intertube
interaction energy and is also in agreement with experimental
observations.1

5. Conclusions and Outlook

A compact and computationally efficient mesoscopic tubular
potential is developed for the description of interactions between
CNTs of arbitrary lengths and orientations. The potential is
formulated within a general continuum description of the van
der Waals intertube interactions based on the integration of an
interatomic potential over the surfaces of the interacting
nanotubes. The tubular potential reduces the functional depen-
dence of the potential energy on six independent geometric
variables to a combination of several functions, each depending
on only one or two geometric parameters. These functions can
be tabulated and used in a computationally efficient algorithm
enabling dynamic simulations of systems composed of thousands
of CNTs. The tubular potential is completely defined by the
functional form and parameters of the carbon-carbon inter-
atomic potential for nonbonded interactions and gives an
excellent accuracy in reproducing the results of the direct
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numerical integration over the surfaces of nanotubes, albeit for
a tiny fraction of the computational cost. For interatomic
potentials that can be represented as a linear combination of
homogeneous functions, such as the Lennard-Jones potential
without a cutoff function, the tubular potential can be expressed
in terms of universal functions independent of the radius of the
nanotubes without any additional approximations.

The relatively simple functional form of the tubular potential
makes it possible to perform analytical analysis of the energy
and forces acting on a pair of interacting CNTs. The results of
the analysis reveal a complex dependence of the interaction
energy, translational force, and torque on the intertube separation
and angle characterizing the relative orientation of the nanotubes.
The direction of torque, in particular, is found to depend on the
distance between the nanotubes, with the torque acting to align
the nanotubes parallel to each other at large distances, when
attraction between the nanotubes plays the dominant role, and
acting to orient the nanotubes perpendicular to each other at
small distances. This observation suggests that intertube interac-
tions favor alignment of nanotubes and their self-assembly into
bundles in the absence of external pressure.

The main area of prospective application of the tubular
potential, however, is likely to be not in the analytical
investigation of the potential energy surface in the space of
geometric parameters but in mesoscopic dynamic simulations
of systems consisting of a large number of interacting nanotubes.
In particular, a mesoscopic model for CNTs based on the
developed tubular potential describing the van der Waals
interactions is used in this work to study the structural evolution

in a system of 4050 nanotubes for nanoseconds. The initial
system composed of randomly distributed and oriented CNTs
is predicted to spontaneously self-assemble into a continuous
network of bundles with partial hexagonal ordering of CNTs
in the bundles. The structure of the network of interconnected
CNT bundles produced in the simulation is similar to the
structures observed in experimental images of CNT films and
“bucky paper”. With the length of each nanotube being 400
nm, an atomic-level representation of a similar system of 4050
nanotubes would involve more than 2.5 billion carbon atoms,
making atomistic simulation unfeasible. In the mesoscopic
simulation, on the other hand, the same system is described by
∼8 × 105 dynamic nodes, allowing for the simulation to be
completed with moderate computing resources, e.g., on a single
workstation.

The development of the tubular potential creates a solid
foundation for further advancement of the mesoscopic force field
model that would broaden the range of potential applications
of the dynamic mesoscopic model. The general framework of
the mesoscopic model is sufficiently flexible to allow for an
extension to modeling of single-walled CNTs of different radii
and multiwalled CNTs, representation of buckling, fracture, and
dynamic variation of radii, as well as incorporation of dissipative
forces and an approximate description of the internal energy of
nanotubes associated with high-frequency atomic vibrations.
These features of the model can be added as needed for
addressing particular aspects of the behavior of CNT-based
materials, such as material response to dynamic loading or
thermal transport properties.

Figure 15. Three-dimensional view of the final configuration obtained in the simulation illustrated in Figure 14d, an enlarged view of a f of the
network of bundles generated in this simulation (b), and a cross-section of a typical bundle (c). Different nanotubes are colored by different color
in panel a, whereas in panel b the nanotubes are colored according to the local intertube interaction energy, from blue and green corresponding to
a low energy realized for parallel tubes in a bundle to red corresponding to a higher energy of nanotube segments that have a weak interaction with
other nanotubes.
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Although in this work the mesoscopic tubular potential is
developed and parametrized for single-walled CNTs, it can be
easily adopted for multiwalled CNTs, where the interaction
potential can be found by summing the contributions from each
of the concentric tubes constituting the multiwalled CNTs.28

Moreover, the general procedure for designing the potential is
not limited to CNTs or graphitic structures. The tubular potential
can be parametrized for an arbitrary law of interaction between
surface elements representing atoms or molecules that build up
tubular structures (if the interatomic potential does not have a
potential well, the procedures for choosing the optimum scaling
functions described in sections 2.2 and 2.3 have to be modified).
The tubular potential, therefore, can be parametrized for a
diverse range of systems consisting of various types of nano-
and microtubular elements, such as nanotubes, nanorods, and
microfibers. The common representation of parts of protein
molecules as tubes in theoretical investigations of bimolecular
conformations and secondary structures54-56 suggests that, with
a proper parametrization, the tubular potential can also be
adopted for computational analysis of biological structures.
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