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The exchange of energy between low-frequency mechanical oscillations and high-frequency vibrational modes
in carbon nanotubes (CNTs) is a process that plays an important role in a range of dynamic phenomena involving
the dissipation of mechanical energy in both individual CNTs and CNT-based materials. The rates and channels
through which acoustic energy deposited instantaneously in individual CNTs is dissipated are investigated in a
series of atomistic molecular dynamics simulations. Several distinct regimes of energy dissipation, dependent on
the initial stretching or bending deformations, are established. The onset of axial or bending buckling marks the
transition from a regime of slow thermalization to a regime in which the energy associated with longitudinal and
bending oscillations is rapidly damped. In the case of stretching vibrations, an intermediate regime is revealed in
which dynamic coupling between longitudinal vibrational modes and the radial “squash” mode causes delayed
axial buckling followed by a rapid transfer of energy to high-frequency vibrations. The results of the atomistic
simulations are used in the design and parameterization of a “heat bath” description of thermal energy in a
mesoscopic model, which is capable of simulating systems consisting of thousands of interacting CNTs. Two
complementary methods for the description of mechanical energy dissipation in the mesoscopic model are
developed. The relatively slow dissipation of acoustic vibrations in the absence of buckling is described by
adding a damping force to the equations of motion of the dynamic elements of the mesoscopic model. The sharp
increase in the energy dissipation rate at the onset of buckling is reproduced by incorporating a hysteresis loop
into the strain energy that accounts for localized thermalization in the vicinity of buckling kinks. The ability of
the mesoscopic model to reproduce the complex multistep processes of acoustic energy dissipation predicted by
the atomistic simulations is demonstrated in mesoscopic simulations of free stretching and bending vibrations of

individual CNTs.
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I. INTRODUCTION

Current interest in carbon nanotube (CNT)-based materials
is fueled by a broad range of potential applications, ranging
from the fabrication of flexible/stretchable electronic and
acoustic devices to the design of advanced nanocomposite
materials with improved toughness, resistance to blast/impact
loading and fire-retardant properties.' Despite the rapid
development of new CNT materials, computational efforts
in this area have been limited by a lack of models capable
of adequately describing the collective dynamics of large
groups of CNTs that define the behavior and properties
of nanofibrous materials, such as CNT films, mats, and
buckypaper. Depending on the structure of the material and the
phenomenon of interest, the number of individual CNTs that
must be included in the representative volume element of the
material in order to predict the effective (macroscopic) material
properties can range from several hundreds to millions. Since
the direct atomic-level simulation of systems consisting of
large groups of CNTs is beyond the capabilities of modern
computing facilities, the application of atomistic modeling is
typically limited to the investigation of individual nanotubes
or small groups consisting of up to several tens of relatively
short (usually tens of nanometers) CNTs.*¢

The recent development of coarse-grained (or mesoscopic)
models based on grouping atoms into larger dynamic units’'°
has provided an attractive alternative to the direct atomistic
modeling of CNTs. In particular, a mesoscopic model that
represents individual CNTs as chains of stretchable cylindrical
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segments’ has been demonstrated to be capable of simulating
systems consisting of thousands of interacting CNTs on time
scales extending up to tens of nanoseconds.®'! Previous
simulations performed with this mesoscopic model have re-
vealed the driving forces responsible for the spontaneous self-
organization of CNTs into continuous networks of bundles®
and have identified CNT bending buckling as an important
factor that limits the coarsening of network structures and
ensures their stability.!' The mesoscopic model has also been
adapted for calculating the thermal transport properties of CNT
network structures. >4

In order to exploit the dynamic nature of the mesoscopic
model for simulating CNT-based materials under conditions
of fast mechanical loading (e.g., blast/impact resistance or
response to shock loading), it is necessary to incorporate a
description of energy dissipation into the model. Figure 1
illustrates the existing mesoscopic model’s ability to simulate
the high-velocity (1000 m/s) impact of a spherical projectile
on a free-standing thin CNT film, albeit without accounting
for the dissipation of mechanical energy—a deficiency that
significantly affects the simulation’s accuracy. While the
coarse-grained representation of CNTs reduces the number
of degrees of freedom that must be tracked in calculations
and greatly increases the time and length scales of the
simulations, it also introduces a cutoff frequency above
which bending and stretching vibrations cannot be resolved.
Moreover, the model does not account for twisting, radial, and
optical vibrational modes'> and grossly underestimates the
heat capacity of the material. The absence of high-frequency
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FIG. 1. (Color online) Snapshots from a mesoscopic simulation of the high-velocity impact of a spherical projectile with a diameter of
100 nm, a density of 2.8 g/cm?® and an initial velocity of 1000 m/s on a free-standing 20-nm-thick CNT film. The snapshots are shown for
55, 125, and 255 ps after the onset of the impact. The film has a density of 0.2 g/cm?, and the CNTs in the film are arranged in a continuous
network of bundles. The nanotubes are colored by their local kinetic energy, and the projectile is not shown in the snapshots.

vibrational modes prevents dissipation of the kinetic energy
into the internal energy of the CNTs, leading to a fast increase
in the “temperature” associated with the dynamic degrees
of freedom of the model in dynamic simulations conserving
the total energy. In simulations of slowly evolving systems,
local thermal equilibrium (i.e., equipartition of thermal energy
among the collective dynamic degrees of freedom that are
explicitly represented in the model and the internal degrees
of freedom associated with the vibrational modes that are
not present in the model) can be assumed, and temperature
control can be used to avoid large temperature variations
associated with the structural evolution of the system.®!0-!1
The assumption of local thermal equilibrium is not valid,
however, in simulations of dynamic phenomena occurring far
from thermal equilibrium, as in the case of the impact-driven
mechanical loading illustrated in Fig. 1.

In order to enable mesoscopic simulations of dynamic
phenomena, it is necessary to design an adequate com-
putational description of the energy exchange between the
vibrational modes that are represented in the coarse-grained
mesoscopic model and those that are omitted. A general
solution is to include the energy of the vibrational modes
that are missing in the mesoscopic model through internal
“heat bath” variables associated with the dynamic elements
of the model and to allow for energy exchange between the
dynamic degrees of freedom and the heat bath variables. This
general approach has been implemented to describe energy
exchange between the electrons and phonons in metals'®
and between the translational and intramolecular motions
in molecular systems.'”!® It has enabled simulations under
conditions of strong non-equilibrium between the dynamic
degrees of freedom and the internal heat bath variables,
which can be created by shock loading,'® or by short-pulse
laser excitation of conduction band electrons in metals'® or
internal vibrational states in molecular systems.!” In all of
these examples, there is a clear physical distinction and/or
a large separation in frequency space between the dynamic
vibrational modes and the subsystem represented by the heat
bath. As a result, distinct internal and dynamic temperatures
may be introduced, and it is possible to reproduce a predefined
rate of thermal equilibration between the internal and dynamic

degrees of freedom by adding dissipative terms to the equations
of motion describing the dynamic elements of the model.

In the case of CNTs, a physical distinction between
the low-frequency acoustic vibrational modes represented
in the mesoscopic model and the remaining degrees of
freedom is not as apparent. Nevertheless, the results of recent
atomic-level molecular dynamics (MD) simulations provide
justification for splitting the frequency domain into distinct
low- and high-frequency regions. In particular, simulations of
heat transfer between CNTs and surrounding octane'*?° and
argon’! matrices suggest that the energy exchange between
low-frequency vibrational modes, which readily equilibrate
with the matrices, and high-frequency modes, which make
the greatest contribution to the heat capacity of the CNTs, is
slow and is limited by a weak coupling between the acoustic
and optical vibrational modes. This observation has motivated
the discussion of the thermal equilibration process in terms
of the evolution of distinct spectrally resolved temperatures
reflecting the level of thermal excitation of particular vi-
brational modes or frequency domains.'*?! The relatively
slow dissipation of bending oscillations in cantilevered,’>?3
free,”* and clamped” (by periodic boundary conditions)
CNTs also supports the notion of weak coupling (or the
presence of a “phonon bottleneck™’) between the excited
acoustic vibrations and the rest of the vibrational modes.
These observations of slow energy exchange between the
high- and low-frequency vibrations provide a solid foundation
for describing the high-frequency vibrational modes in the
mesoscopic model within the general framework of the heat
bath approach.

In order to design and parameterize a heat bath for the
mesoscopic model of CNTs, it is necessary to establish
two quantities: the heat capacity of the bath and the rate
of energy transfer between the vibrational modes that are
explicitly represented in the mesoscopic model and those
that are approximated by the heat bath. The former quantity
can be easily obtained by subtracting the contribution of
the dynamic degrees of freedom from the experimental
specific heat of CNTs which, at and above room temperature,
can be safely derived from measurements performed for
CNT bundles or crystalline graphite.’®?” For the purpose of
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comparing the predictions of the mesoscopic model with the
results of classical MD simulations, the heat capacity can
also be obtained theoretically, using the equipartition and
virial theorems of classical mechanics. The rates of energy
transfer between the mechanical vibrations of CNTs and
their high-frequency vibrational modes, however, have only
been investigated in a limited number of atomic-level MD
simulations®>~2> performed in the context of energy dissipation
in CNT oscillators. The complete picture of the dependence of
the rate of energy dissipation on the internal CNT temperature
and the initial energy of the excited vibrational modes has not
yet been established.

In this paper, we report the results of atomic-level MD
simulations of acoustic energy dissipation in a single free CNT
with different levels of initial stretching or bending deforma-
tion. Several regimes of energy dissipation are established,
and the results of the simulations are suitably formulated
for implementation in the mesoscopic model. The heat bath
approach for describing the thermal energy of the nanotubes
is then developed and tested for free vibrations of individual
CNTs.

II. ATOMISTIC SIMULATIONS

A. Computational model and analysis of energy dissipation

The atomistic MD simulations were performed with 26-nm-
long (10,10) single-walled CNTs composed of 4 260 atoms
arranged into 100 unit-cell rings (40 atoms per unit cell) and
two 130-atom caps. Each cap consists of one half of a C>*
fullerene molecule, which interfaces with the nanotube by
a 10-atom ring. The interatomic interactions are described
by the adaptive intermolecular reactive empirical bond-order
(AIREBO) potential.?® The simulations of free stretching
and bending vibrations of CNTs were performed under the
condition of constant total energy, making it possible to follow
the dissipation of the mechanical energy deposited in the
acoustic modes at the beginning of the simulations.

All nanotubes were initially equilibrated at temperatures
of 41, 294, 568, and 1054 K. The equilibrated CNTs were
instantaneously deformed by either homogeneously stretching
or bending the nanotubes at the beginning of the simulations
of free vibrations (this time corresponds to the time r = 0
in the discussion of the results in Secs. IIB and IIC). In
the case of axial stretching, the initial tensile strain was
varied between 0.5% and 10%, with the maximum values
exceeding the proportional strain limit but not surpassing
the yield strain.?’ In the case of the bending deformation,
the positions and velocities of the atoms were transformed
so that CNT deforms into an arc with a constant radius of
curvature while preserving both the length of the centerline of
the CNT and the relative angles between the atomic velocity
vectors and the centerline. The simulations were performed
for radii of curvature ranging from 10 to 1000 nm. This range
includes radii that are both below and above the critical value
for the onset of bending buckling determined in quasistatic
simulations of (10,10) CNTs, approximately 27 nm,'!-303!

The analysis of the energy flow from the low-frequency
acoustic modes excited at the beginning of the simulations to
other vibrational modes is based on the partitioning of the total
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energy of a nanotube into energies associated with four distinct
groups of vibrational modes: the longitudinal acoustic (LA)
modes, the bending acoustic (BA) modes, an approximate
representation of radial modes (Rad) associated with changes
in the nanotube cross sections, and the remaining “heat bath”
(HB) modes that include the high-frequency optical as well
as the acoustic twist modes. This partitioning allows for a
direct mapping of the results of the atomistic simulations onto
a description of energy dissipation in the mesoscopic model,
in which only the low-frequency longitudinal and bending
vibrations are represented explicitly.”®!! The total energy of
the missing vibrational modes in the mesoscopic model is
accumulated in heat bath variables that are coupled to the
dynamic degrees of freedom (see Sec. III). The radial modes
are not explicitly represented in the current version of the
mesoscopic model, but are distinguished in the analysis of the
MD simulation results in order to obtain a clearer picture
of the physical mechanisms responsible for the transitions
between different regimes of energy dissipation. Some of the
radial modes can be included in the mesoscopic simulations by
adding the local CNT radii to the set of dynamic variables.”8

In the evaluation of the energy associated with the longitu-
dinal and bending acoustic modes of a CNT, the center of mass
positions and velocities of all unit cell rings are first calculated
by averaging over the corresponding 40 carbon atoms in each
cell. The acoustic modes of the CNT can then be analyzed
in a manner consistent with the mesoscopic representation of
the CNT as a chain of coarse-grained particles (or nodes).
Each node represents a cylindrical segment with length equal
to the axial size of the unit cell. The effect of the two half
fullerene caps on the dynamics of the nanotube is neglected
in the analysis. The correspondence between the atomistic
model of a CNT and its mesoscopic representation is illustrated
in Fig. 2(a). Note that the length of a CNT segment in the
mesoscopic model does not have to be equal to the length of a
CNT unit cell and is substantially longer in actual mesoscopic
simulations.”®!"'2 The mesoscopic segment length is chosen
to be equal to the CNT unit cell length in the analysis of
the atomistic simulation results in order to ensure that all LA
and BA modes are accounted for and that the corresponding
energies associated with these groups of modes are reproduced.

In order to measure the instantaneous energy associated
with a distinct group of vibrational modes, it is necessary to
calculate both the kinetic and potential energy contributions
from this group of modes. In accordance with the mesoscopic
model, the total (harmonic) potential energies associated with
LA and BA modes are

lk N—-1
Ua = ﬁrguf'“ — 7l —a) (1)

and

1 N-T N2

Usa = kinaa Z (;) : )

i=2

respectively, where 7' is the position of node i, a is the
equilibrium separation between the nodes (the length of a
CNT segment in the mesoscopic model), kg, and kpng are the
stretching and bending force constants,’ respectively, and R;
is the local radius of curvature at node i. The corresponding

165414-3



JACOBS, NICHOLSON, ZEMER, VOLKOV, AND ZHIGILEI

PHYSICAL REVIEW B 86, 165414 (2012)

@ i=1,2,3,4,..

N 40 atoms

80

FIG. 2. (Color online) Schematic illustration of the mapping of (a) the atomistic model of a (10,10) CNT to a chain of coarse-grained
particles and (b) a unit cell ring of the (10,10) CNT to a closed chain of 10 point masses. The coarse-grained representations are used in the
analysis of the partitioning of the vibrational energy between the longitudinal, bending, and radial modes of the CNT.

kinetic energies of the LA and BA modes can be determined
from the components of the node velocities v’ parallel and
perpendicular respectively, to the local elastic line defined as
¢ = (! — Fi=ly/|F*+! — =1 for internal nodes and as a
line directed along the two end segments for nodes i = 1 and
N:

1L
Tin=m ;w' ey 3)
and
1 N
Ton = 5m Y 1) =@ &), )

i=1

where m =40 x 12 amu = 480 amu is the total mass of each
node.

Direct application of Egs. (1) and (3) gives a satisfactory
estimate of the total LA energy, Epa = Tia + ULa, subject
to the correct choice of the temperature-dependent node
separation a [the AIREBO potential predicts an expansion
of the length of a (10,10) CNT by 0.3% as the temperature
changes from 40 to 1054 K]. The dependence of a on
the instantaneous HB temperature 6 is determined from the
average node spacing in equilibrium MD simulations and is
used in the dynamic stretching and bending simulations. Since
the time-averaged values of kinetic and potential energies of
the LA modes are equal within the harmonic approximation,
it is possible to calculate an appropriate prefactor [ky,/(2a)]
for the LA potential energy empirically by requiring the
time integral of the LA potential energy to be equal to that
of the LA kinetic energy, and thus to avoid calculating the
temperature-dependent force constant kg, directly. Given that
the number of heat bath modes is far greater than the number
of longitudinal and bending modes, the dissipation of energy
from the excited mechanical vibrations results in a moderate
increase in the heat bath temperature during the simulation,
and a single value of the scaling factor is chosen for each
simulation.

In the analysis of the BA modes, the precise definitions of
the local radius of curvature and the number of neighboring
nodes included in the calculation significantly affect the
bending potential energy. When only nearest-neighbor nodes
are considered, the direct application of Eq. (2) does not yield

the periodic fluctuations that are expected for large-amplitude
bending oscillations. In this case, a normal mode analysis,
which measures small bending oscillations relative to a fixed
axis, more appropriately captures the collective dynamics of
low-frequency bending oscillations. The total BA potential
energy is reconstructed from the sum of the energies contained
in each of the mesoscopic normal modes denoted by pga, the
eigenstates of the mesoscopic system. Given free boundary
conditions, the BA potential energy calculated according to
this mode analysis is

N 2
+ [Z (ry = 730) pé?\*f} } )
i=1

where
(),i Sﬁ(l—l/z)
— _ = 6
OpA c0s|: N (6)
and
16k ST
(s) bnd . 4
[op]” = 3 S (m) N

with kyng scaled analogously to kg in order to match the
time-averaged kinetic and potential energies. The positions
and velocities of nodes, (rx, y,r ) and (vi,v v;), are the
center of mass positions and velocities of a umt cell ring i in
Cartesian coordinates. The z axis is directed along the axis of
the equilibrated (deformation-free) nanotube defined by nodes
(r, 07 v.0:72.0)- Since the distribution of the atomic velocities
prior to equilibration of the CNTs introduces small nonzero
angular momenta, a transformation is applied to the atomic
positions and velocities such that the CNT is reoriented along
the z axis prior to the analysis of the results at a given time step.
Although the normal mode analysis given by Egs. (5)—(7) is
only valid in the limit of small displacements of the nodes, we
find that the use of Eqs. (4) and (5) minimizes the oscillations
of the total energy of the BA modes, Ega = Tga + Uga, in
equilibrium simulations and results in a smooth profile for Ega
in dynamic bending simulations. The summation in Eq. (5) is
performed over nodes i and doubly degenerate normal bending
modes s corresponding to the displacements in two orthogonal
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(x and y) transverse directions. The lowest normal mode, s =
0, corresponds to linear translation of the entire CNT and is
excluded from the calculations since the net linear momentum
is ignored; this observation also applies to the LA modes. As a
consequence, in simulations consisting of 100 unit cell rings,
the analysis described above accounts for the contribution of
99 LA and 198 BA modes.

Although radial modes are not currently included in the
mesoscopic description, a separate treatment of the radial
mode energy is important in the analysis of the MD results. To
obtain a measure of the energy transferred to the radial modes
of an armchair (10,10) CNT, we approximate the structure of
a unit cell ring by a closed chain of n = 10 particles (point
masses). Each particle corresponds to four atoms of the unit
cell [a part of a hexagon, as shown in Fig. 2(b)]. By considering
the radial velocities of the particles, the total radial kinetic
energy of all rings in the nanotube can be calculated as

Traa = 5 — Z Z ®)

tljl

where v’ &, 1s the radial component of the velocity of particle j
in unit cell ring i with respect to the center of mass of the ring.
We can obtain a smooth energy profile by calculating a moving
average of Traq(#) with a time window equal to the period of
breathing oscillations, approximately 1 ps. By invoking the
virial theorem, we can approximate the total radial energy as
ERad = 2TRad-

The radial kinetic energy of each ring can be further
decomposed into contributions from » radial modes. Because
of the periodicity of the ring, we can approximate the radial
kinetic energy of ring i contained in mode s as

2
1m .
t () __ (s),
Rad - E_ |:Z vR j'ORadj:| ’ ®
where

(10)

The summation in Eq. (9) is performed over n particles
in unit cell ring i. Since the center of mass velocities of
the rings are eliminated in the analysis, each ring has n — 1
radial degrees of freedom. With N = 100 and n = 10,
the number of radial modes revealed in this analysis is
N — 1) =900. The radial modes with s =0 and s =2
correspond to the radial breathing and squashing oscillations
of the nanotube cross sections, respectively. Although this
approximate representation of the radial modes does not
account for all radial modes present in the CNT, it allows us
to follow the flow of energy to this group of vibrational modes
and, in particular, to identify the excitation of the “squash”
mode as a precursor for axial buckling (see Sec. II B).

Lastly, the energy of the remaining (heat bath) vibrational
modes is calculated by subtracting the sum of the total energies
associated with the longitudinal, bending, and radial modes
from the total energy of the nanotube,

Eng = Ecnt — (Epa + Ea + ERraq) - (1D
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Since the 130-atom caps at the ends of the nanotube are
neglected in the analysis of the LA, BA, and Rad modes, the
energy of the atoms belonging to the caps is also excluded in
the calculation of Ecnr. With this definition, and taking into
account that the translational motion of the entire nanotube is
eliminated in the simulations, the heat bath is comprised of a
total of 10 800 distinct vibrational modes (3 x 4000 atoms —
99 LA — 198 BA — 900 Rad — 3 translational).

Ten simulations, each of which was initialized from a
unique configuration of atomic positions and velocities, were
conducted for each combination of initial strain and initial
temperature. The rates of thermalization of stretching and
bending oscillations were determined by dividing the duration
of the atomistic simulations into discrete time intervals.?> For
each interval, the decay rate of the energy associated with the
excited group of vibrational modes was calculated by linear
regression. Associated average values for the longitudinal,
bending, radial, and heat bath energies were also determined at
the midpoint of each time interval. The values of energy were
converted to temperature units for each group of modes by
dividing the energy values by the product of the corresponding
number of modes present in each group and the Boltzmann
constant kg, e.g., 6o = Epa/(99kg). The conversion of
the energy values to temperature units does not imply an
assumption of thermal equilibrium, but simply provides a
convenient way to compare the instantaneous energy values for
different groups of vibrational modes with drastically different
numbers of degrees of freedom.

B. Dissipation of LA mode vibrations

The analysis of the rates and mechanisms of the energy
transfer from LA modes excited at the beginning of the
simulations to the other vibrational modes reveals the existence
of three distinct regimes of stretching energy dissipation. The
evolution of the energies of the LA, BA, Rad, and HB modes
characteristic of these three regimes is shown for simulations
performed with different values of initial strain in Fig. 3.
In the first regime (stretching regime I), at low initial strain
[e.g., Fig. 3(a)], a smooth, gradual decay of the energy of LA
oscillations is observed on the time scale of hundred(s) of
picoseconds. In the second regime (stretching regime II), at
intermediate initial strains of about 3.2-5% [e.g., Fig. 3(b)],
a more complex three-step energy transfer resulting from
radial mode-mediated axial buckling is observed. Finally, in
the third regime (stretching regime IlI), at high initial strain
[e.g., Fig. 3(c)], an immediate thermalization of most of the
stretching energy takes place due to the compressive axial
buckling of the nanotube. The rates of mechanical energy
dissipation and the pathways of the energy redistribution
among the vibrational modes are discussed next for each of
these three regimes.

The gradual decay of the energy of the excited LA modes
shown in Fig. 3(a) is typical of simulations performed with
initial strains of 3% and below. Following the excitation of
the LA modes, the length of the CNT begins oscillating with
a frequency of the lowest LA mode, approximately 0.3 THz.
The amplitude of these oscillations decreases with time, as the
deposited energy is transferred to the BA, Rad, and HB modes
due to dynamic coupling between the vibrational modes. The
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FIG. 3. (Color online) The evolution of the energies of the LA, BA, Rad, and HB modes in simulations performed for CNTs equilibrated
at a temperature of 568 K and homogeneously stretched at time ¢ = 0 with initial axial strains of 3% (a), 4% (b), and 6% (c). In the right
panels, the values of energy are converted to temperature units for each group of modes by dividing the energy values by the product of the
corresponding number of modes present in each group and the Boltzmann constant. These three simulations represent the three distinct regimes

of stretching energy dissipation identified in the simulations.

energy transfer results in the thermalization of the CNT, with
the effective “temperatures” of each of the groups of modes
converging towards thermal equilibrium [see the right panel of
Fig. 3(a)]. The energy plots shown in the left panels of Fig. 3(a)
indicate that most of the energy of the excited LA modes is
transferred to the HB modes, which are primarily comprised
of high-frequency optical modes and have an almost ten times
greater heat capacity than the combined LA, BA, and Rad
modes. A strong dynamic coupling between the stretching

oscillations and the radial modes can also be noted in the
energy plots. This coupling plays the key role in causing the
transition to the second regime of the energy dissipation at
higher axial strains.

The rate of decay of the energy of the LA oscillations
in the simulations performed in stretching regime I, in
which the initial axial strain does not exceed 3%, is largely
defined by the temperature of the CNT and the level of the
stretching excitation. The temperature and strain dependencies
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FIG. 4. (Color online) The evolution of the energy (converted to temperature units as explained in the text) of the LA modes in simulations
performed for initial temperatures of 41 and 1054 K with the same axial strain of 2% (a) and for initial strains of 1% and 3% at the same initial

temperature of 568 K (b).

are illustrated in Fig. 4, where the energy profiles (converted
to temperature units as discussed above) are shown for two
different values of the initial temperature [see Fig. 4(a)]
and strain [see Fig. 4(b)]. It is apparent that higher initial
temperatures and/or strains result in faster energy transfer from
the excited LA modes. In the quantitative analysis of the rate
of energy transfer from the LA modes, this rate is evaluated as
a function of the instantaneous temperature 6 of the HB modes
(these modes account for approximately 90% of all vibrational
modes in a CNT, and 0 can be used as a measure of the overall
temperature of the CNT) and the instantaneous excess energy
in the LA modes (the difference between the instantaneous LA
energy and the equilibrium value E!, corresponding to the
instantaneous temperature 6, Ef , = 99k56). Each simulation
produces time-dependent decay rates with a range of values
corresponding to the variation of the excess energy in the LA
modes, Ey o — Eﬁ A» and the temperature 6 along the simulated
trajectories.

The results of the calculation of the decay rates obtained
in simulations performed for four initial temperatures of 41,
294, 568, and 1054 K and four axial strains of 0.5, 1, 2,
and 3% are shown in Fig. 5. The decay rate exhibits a
strong dependence on the excess energy in the LA modes
and approaches zero in the limit of thermal equilibrium. The
dependence on the HB temperature is somewhat weaker but
still apparent from the plots, with higher rates of thermalization
observed at elevated temperatures. The decay rates vary
slightly across simulations differing only in their initial atomic
configurations, resulting in the sizable error estimates in Fig. 5;
however, these path dependencies must be ignored in order to
translate the results into a form suitable for implementation
in the mesoscopic model. In this first stretching regime,
the simulation-averaged decay rates can be relatively well
described by the following two-dimensional function of the
relative excess energy (Epa — Eﬁ N4 Eﬁ A and the equilibrium
energy E/ , used as a measure of the instantaneous temperature
0:

_ 9 aLA
4 (ELa — E{y) = —y™* <M> (EﬁA)ﬁLA ,

dt
(12)

where the best fits for the adjustable parameters are

pH = (1.67 £0.41) x 1072 (eV! 7" ps1),
o = 1.34 £0.07, and B“* = 2.09 £ 0.10.

The fact that a™* is greater than unity indicates that the
dependence of the rate of energy transfer on the instantaneous
excess energy in the LA modes is stronger than exponential
decay.

The gradual decay of stretching oscillations described by
Eq. (12) is only observed in simulations performed with
initial strains not exceeding 3—4%. At higher initial strains,
a transition to stretching regime II takes place, in which the
energy transfer from the excited LA modes proceeds in three
distinct steps, as illustrated in Fig. 3(b). The initial gradual
energy dissipation, similar to the one in stretching regime I
discussed above, suddenly gives way to a sharp drop of the

28 T T T T T T T T 1200
241 1000
204
- 800
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5 1.6 o
3 600 =
o 1.2
w
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uT 08}
<
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FIG. 5. (Color online) The rate of energy dissipation from the LA
modes in the first stretching regime (initial strain does not exceed 3%)
as a function of the excess LA energy. The data points are obtained
by averaging over ten simulations performed for each combination of
initial strain and initial temperature. Isothermal contours of the fitted
two-dimensional function given by Eq. (12) are drawn for several
temperatures ranging from 200 to 1200 K.
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FIG. 6. (Color online) The evolution of the energies of the LA, BA, Rad, and HB modes as well as the radial breathing and squash modes
in simulations performed for a CNT equilibrated at a temperature of 41 K and homogeneously stretched at time ¢+ = 0 with initial axial strains
of 3% (a), 4% (b), and 6% (c). The horizontal dashed lines mark the critical value of the second radial mode energy required for the onset of

axial buckling.

LA energy corresponding to a rapid thermalization of a large
fraction of the initial stretching energy. This drop is followed
by a gradual dissipation of the remaining energy of the LA
modes that is well described by Eq. (12).

A detailed mode-resolved analysis of the energy redistri-
bution in stretching regime II reveals that the onset of axial
buckling, mediated by the excitation of the second radial
mode, is responsible for the drop in the energy of the LA
modes. The role of the second radial mode in the transition
from the first to the second regime of stretching energy
dissipation is evident from the energy plots shown in Fig. 6.
The simulation illustrated by Fig. 6(a) is performed with an
initial axial strain of 3%, just below the level of strain that
causes the transition to the second energy dissipation regime.
Although the initial stretching of the CNT directly excites
the first (breathing) radial mode, the energy of this mode
quickly decays and is surpassed by the energy of the second
(squash) radial mode, which rises steadily during the first 20 ps
after the excitation. Strong dynamic coupling between the LA
modes and the second radial mode becomes apparent when the
energy of the second radial mode approaches about 15 eV [see
Fig. 6(a)]. This dynamic coupling, which is more pronounced
in simulations performed at lower temperatures, reversibly
transfers energy between the LA modes and the second radial
mode, although the overall dissipation of the energy of the
excited LA modes can still be described by Eq. (12).

When the excess energy of the second radial mode reaches
a critical value of 18.5 4= 0.5 eV, oscillations in the distance
between the opposing walls of the CNT that correspond to
this mode [see Fig. 7(a)] become unstable, and the CNT
buckles axially [see Fig. 7(b)]. Although the deformation of
the CNT walls at an axial buckling kink is reversible, the

buckling kink forms a region in which acoustic phonons are
effectively scattered, leading to the rapid thermalization of
a large portion of the energy contained in the excited LA
modes. The amount of energy dissipated as a result of axial
buckling varies stochastically between 50 and 75% of the
total excess energy of the LA modes and is defined by the
precise dynamics of the kink formation and disappearance.
The energy remaining in the LA modes after the buckling kink
has relaxed continues to dissipate according to the mechanism
characteristic of the first regime.

In addition to the energy drop at the onset of buckling, the
maximum energy attained by the second radial mode in any
given simulation is also a stochastic quantity. In particular,
in simulations performed at the threshold conditions between
the first and second regimes of stretching energy dissipation
(initial temperature of 41 K and initial axial strain of 3.2%)
and differing only in their instantaneous atomic positions and
velocities at the time of the stretching deformation, the sim-
ulated trajectories took drastically different paths depending
on whether the second radial mode energy reached the critical
value and an axial buckling kink was formed (e.g., Fig. 8). Nev-
ertheless, the probability of kink formation can be estimated as
a function of the initial strain and temperature using the results
of ten simulations performed for similar initial conditions [see
Fig. 9(a)]. The probabilities at each initial temperature are fit
with a logistic function. While the initial strain threshold for
transition to stretching regime Il increases with initial temper-
ature, the excess energy of the second radial mode at which
the transition occurs is essentially temperature independent.

The dependence of the mean waiting time required for the
formation of a kink on the initial temperature and initial strain
is shown in Fig. 9(b). This time corresponds to the duration
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FIG. 7. (Color online) Snapshots of atomic configurations from
a simulation performed with an initial temperature of 1054 K and
an initial axial strain of 3.6% are shown in (a). As the length of
the (10,10) CNT oscillates, the energy in the second radial mode
increases (as can be seen from the ripples in the cross section) until
an axial buckling kink is formed at about 9 ps (denoted by arrows).
Atoms are colored according to their instantaneous kinetic energies,
with red indicating higher energy. Enlarged views of two orthogonal
projections of the segment of the CNT undergoing axial buckling are
shown in (b). Schematic representations of CNT cross sections with
atomic displacements corresponding to the second radial mode are
shown in (c).

of the first step of the gradual energy dissipation in the three-
step process of the stretching energy dissipation in the second
regime, e.g., approximately 17 ps in Fig. 6(b). The waiting
time is between 20 and 30 ps just above the threshold strain
for the transition to the second stretching regime and decreases
to approximately 1.5 ps as the initial strain is increased further.

The decrease in the waiting time to a duration comparable
with the period of stretching oscillations signifies the transition
to stretching regime III, in which an axial buckling kink forms
within a single period of stretching oscillations, causing the
immediate transfer of energy from the LA modes to other
modes [see, e.g., Fig. 6(c)]. This transition occurs between
initial strains of 4.2% and 5.8 % for initial temperatures of 1054
and 41 K, respectively. The formation of the buckling kink

PHYSICAL REVIEW B 86, 165414 (2012)

in this regime is caused by the collision of two compressive
unloading waves propagating from the two ends of the initially
stretched nanotube. The local compressive strain created by
this collision, found to be at least 5% in all simulations in
this third stretching regime, is sufficiently high to initiate axial
buckling immediately.

The collision of the unloading waves, indicated by the
regions of high local kinetic energy, and the resulting axial
buckling kink formed between 1 and 1.5 ps after the beginning
of the dynamic simulation can be seen in snapshots from
simulations performed with an initial temperature of 568 K and
an initial homogeneous axial strain of 6% (see Fig. 10) and an
initial temperature of 1054 K and an initial strain of 10% (see
Fig. 11). Atan initial strain of 6%, the onset of axial buckling is
first observed within an approximately 5-nm-wide central part
of the nanotube (snapshots at 1.5 and 2 ps in Fig. 10). This is
followed by the propagation of two buckling kinks away from
the center of the CNT (snapshot at 2.5 ps in Fig. 10) and their
eventual disappearance. The formation of the buckling kinks
leads to a rapid dissipation of the energy of the excited LA
modes, and the buckling kinks do not reappear in subsequent
stretching oscillations. At a higher initial strain of 10%, the
energy deposited in the CNT is sufficient to create multiple
buckling kinks and large-scale distortions of the shape of
the CNT (see Fig. 11). The deformation of the central part
of the nanotube in this case is not limited to the axial
shell buckling and involves a complex post-buckling behavior
encompassing a combination of different buckling modes.

The minimum local compressive strain of 5% necessary for
the immediate formation of an axial buckling kink in the third
stretching regime agrees with the results of MD simulations
performed under conditions of quasistatic compressive loading
at relatively low temperatures, from zero to 100 K, in which
the critical compressive strain for the onset of the axial
shell buckling was found to be between 3.5 and 5.25% for
(10,10) CNTs.3":33-35 As in stretching regime II, the transfer
of energy from the LA modes to other modes during the time
of the buckling deformation is incomplete and continues via
the slower mechanism characteristic of the first stretching
regime once the axial buckling kink(s) has(have) relaxed.

While the general physical mechanisms responsible for
transitions between different regimes of stretching energy
dissipation can be expected to be independent of the length
of the CNTs, the values of the initial strain corresponding to
the transitions between the three regimes of stretching energy
dissipation in a 26-nm-long (10,10) CNT cannot be directly
applied to CNTs of different lengths. To explore the length
dependence of the energy dissipation, we performed a series of
simulations for CNTs with length ranging from 14 to 147 nm
(50 to 600 unit cell rings) and the same values of initial
temperature and axial strain, 568 K and 2%. The process
of energy dissipation in the 50 unit cell CNT is essentially
the same as in the 100 unit cell CNT discussed above
(stretching regime I). The 200 unit cell CNT exhibits a
reversible transfer of energy between the LA modes and
the second radial mode [similar to Fig. 6(a)], indicative
of the proximity to the transition to stretching regime II.
The dissipation in the 400 and 600 unit cell CNTs is the
three-step process typical of stretching regime II, with the
waiting time for the onset of the axial buckling of about
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FIG. 8. (Color online) The evolution of the energy of the LA modes (top) and the second radial mode (bottom) in two simulations performed
for the same initial temperature of 41 K and initial axial strain of 3.2%. The only difference between the two simulations is the instantaneous
distribution of the atomic positions and velocities at the time of the stretching deformation. An axial buckling kink is formed at # = 30 ps in
simulation a and is not observed in simulation b. The horizontal dashed line marks the critical value of the second radial mode energy required

for the onset of axial buckling.

25 ps. The smaller initial strain required for the transition to
stretching regime II can be explained by the local character
of the axial buckling and the longer exposure of the central
part of the CNT to compressive stresses generated by the
interaction of the unloading waves propagating from the two
ends of the nanotube. Thus both the total (Iength dependent)
excess energy in the nanotube and the local transient
concentration of the strain energy during the simulation
(defined by the initial loading conditions) are additional factors
affecting the mechanisms and rates of the energy dissipation.

C. Dissipation of BA mode vibrations

The analysis of the energy transfer from the BA modes
is performed by following the evolution of the energies of all
mode groups in free bending simulations in which equilibrated
CNTs are instantaneously deformed (bent into an arc with
a constant radius of curvature) at a time ¢t = 0. Just as
axial buckling is critical for defining the regimes of energy
dissipation for stretching vibrations, bending buckling is found
to play a prominent role in the energy dissipation of bending
vibrations. Two distinct regimes of energy dissipation from
the BA modes are established: slow temperature-dependent
decay on the time scale of tens of nanoseconds in the
absence of bending buckling (bending regime I), and fast
temperature-independent energy transfer on the time scale of
several periods of bending oscillations at levels of bending ex-
citation sufficient for the formation of bending buckling kinks
(bending regime II).

The energy relaxation in bending regime I is illustrated by a
simulation performed at an initial temperature of 568 K and an
initial radius of curvature of 30 nm [see Fig. 12(a)]. The drop
of the energy of the BA modes from an initial value of 35 eV to

about 24 eV within the first picosecond, and the corresponding
increase of the energies of the other modes, is related to the
relaxation of the distortions of thermally fluctuating carbon-
carbon bonds away from the neutral bending surface created by
the instantaneous bending of the thermally equilibrated CNT.
As a result, not all of the initial bending energy is deposited
into the BA modes. The subsequent evolution of the energy of
the BA modes exhibits a very slow dissipation of the energy of
the bending vibrations that is barely visible on the time scale
of 250 ps shown in Fig. 12; the half-life of the bending
excitation defined with respect to the energy of the BA modes
after the initial drop is estimated to be 26 ns in this simulation.
The slow rate of decay of the bending energy is consistent with
the results of earlier simulations of free bending vibrations of
a shorter 10-nm-long (10,10) CNT in which no measurable
decrease in the amplitude of oscillations was detected over
hundreds of vibrational periods.>* No anomalously fast dissi-
pation of bending oscillations similar to that reported in Ref. 25
is observed in the simulations performed in the first regime
with initial temperatures up to 1054 K, suggesting that the
anomalous dissipation is likely to be specific to the double
clamping of the CNTs imposed by the periodic boundary
conditions used in Ref. 25. The double clamping may facilitate
coupling of the bending vibrations to the LA modes that have
much faster dissipation rates (see Sec. II B).

The energy dissipation in bending regime II is illustrated
in Fig. 12(b), in which fast thermalization of the energy of
bending vibrations is observed during the first 50 ps after
the initial drop of the buckling energy. In this simulation,
which was performed at an initial temperature of 568 K and an
initial radius of curvature of 15 nm, the amplitude of bending
oscillations is high enough to create buckling kinks at every
half period of the first two bending oscillations. For a similar
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FIG. 9. (Color online) The probability of the formation of an
axial buckling kink and observing the immediate dissipation of the
LA energy (a) and the mean waiting time until this event occurs (b).
Shown with the probabilities are the best fits of logistic regressions
for each initial temperature. The transition to the third regime is
defined where the mean waiting time drops to less than one period of
stretching oscillation (less than 3 ps); this transition occurs between
4.2% and 5.8% initial strain for initial temperatures 1054 and 41 K,
respectively. Error bars are not shown in (b) for strains at which the
formation of a kink was observed in only one simulation.

simulation performed at a higher temperature of 1054 K, the
snapshots shown in Fig. 13 for the first half period of the
first bending oscillation after the initial deformation provide a
visual picture of the transient formation of the buckling kinks.
The energy of the BA modes drops from 88 eV to about 60 eV
within the first picosecond, and the CNT quickly relaxes
from its semicircular profile to form two bending buckling
kinks. The buckling kinks shift towards each other, merge at
about 4.5 ps, and disappear as the CNT straightens up by
about 7 ps. The buckling points reappear during the following
3 cycles of bending oscillations but cease to exist by ¢ =
50 ps. Once the energy of the BA modes decreases below the
minimum required for the formation of the buckling kinks,
the dissipation rate drops dramatically, and thermalization
continues through the mechanism characteristic of bending
regime I. The observation of fast energy dissipation in the
regime in which the CNT experiences bending buckling is
consistent with the fast energy dissipation reported for a (5,5)
cantilevered CNT that was highly deformed and buckled in its
initial state.?’
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FIG. 10. (Color online) Snapshots of atomic configurations from
a simulation of a CNT with an initial temperature of 568 K and an
initial homogeneous axial strain of 6% are shown in (a). Atoms are
colored according to their instantaneous kinetic energies, with red
indicating higher energy. An enlarged view of a segment of the CNT
undergoing axial buckling at a time of 2 ps is shown in (b).

The results of the calculation of the decay rates obtained
in the dynamic bending simulations performed for four initial
temperatures, 41, 294, 568, and 1054 K, and seven values of
the initial radius of curvature, 10, 15, 25, 30, 50, 75, 100,
and 1000 nm, are shown in Fig. 14. As in the analysis of the
stretching vibrations, the rate of the bending energy dissipation
is evaluated as a function of the instantaneous temperature 6 of
the HB modes and the instantaneous excess energy in the BA
modes above the equilibrium value E g 4 that corresponds to the
instantaneous temperature 6, Ef}, = 198kg6. Each simulation
produces a range of decay rates corresponding to the variation
of the excess energy in the BA modes, Egs — Eg A»> and the
temperature 6 along the simulated trajectories.

There is a sharp increase in the energy decay rate by
more than an order of magnitude once the excess energy
in the BA modes reaches the critical value Ej, required
for the dynamic buckling kink formation [see Fig. 14(a)].
This threshold behavior allows us to draw a clear distinction
between the two regimes of bending energy dissipation that
have drastically different dissipation rates and dependences
on the excess bending energy. An enlarged view of the
dependence of the decay rates on the excess energy in bending
regime I is shown in Fig. 14(b). These decay rates are about

165414-11



JACOBS, NICHOLSON, ZEMER, VOLKOV, AND ZHIGILEI

t=0.5ps

t=1.0ps

t=15ps

t=2.0 ps

t=2.5ps

t=3.0 ps

t=3.5ps

t=4.0ps

FIG. 11. (Color online) Snapshots of atomic configurations from
a simulation of a CNT with an initial temperature of 1054 K and an
initial homogeneous axial strain of 10%. Atoms are colored according
to their instantaneous kinetic energies, with red indicating higher
energy.

two orders of magnitude lower than those of the first LA
dissipation mechanism. Within the calculation error, the decay
rate in bending regime II can be considered to be temperature
independent [see Fig. 14(a)].

The functional dependence of the decay rate on the relative
excess energy (Epa — Ej,)/ES, and the equilibrium energy
Eg A used as a proxy for the temperature can be written in a
form applicable to both the first and second regimes of bending
energy dissipation:

d

0
E(EBA - EBA)
BA(I)
Ega — E? N\ BEAD
= oy (E (k)
BA
E E@ o[BA(II)
BA — ﬂBA(ll)
Sy (BT ()
BA
x H [(Epa — Egy) — Egia]. (13)

where H(E) is the Heaviside step function, the critical excess
energy for the onset of buckling E}, = 13.5eV is estimated
from the data shown in Fig. 14(a), and the best fits for the
adjustable parameters are

yPAD = (4.58 £0.58) x 107 (eV!#""ps 1),
oBAD = 1.014+0.07, ABAD =1.44 +0.06,

yBAID — (4,49 £ 0.81) x 1072 (eV'#""'ps1),
oBAD = 0,94 +0.07, ABAM = 0.84 +0.06.
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As can be seen from Fig. 14, this set of parameters provides
a good description of the data points for both regimes of energy
dissipation. In both regimes, the decay of the energy of bending
oscillations appears to be exponential since both oPA® and
B2 equal unity within the calculated error. The fact that
the values of oBAUD and BBAUD are similar reflects the lack of
temperature dependence of the decay rate in bending regime II.
The mechanisms responsible for energy dissipation in bending
regime I are likely to be at work in the second regime as well,
albeit with a negligible contribution to the total rate of dissipa-
tion. It is therefore not necessary to switch off the contribution
of the slow dissipation characteristic of the first regime when
considering energy dissipation in bending regime II.

III. DISSIPATION OF ACOUSTIC VIBRATIONS IN THE
MESOSCOPIC MODEL OF CNTs

The results of the atomistic simulations described above
provide a general framework for designing a computational
description of acoustic energy dissipation in the mesoscopic
model of CNTs, which does not include an explicit represen-
tation of the radial and HB vibrational modes. While there
are still some uncertainties with respect to the effects of the
initial loading conditions (e.g., excitation of an acoustic pulse
rather than homogeneous straining of CNTs or simultaneous
excitation of different groups of vibrational modes) and the
parameters of the nanotubes (e.g., length, diameter, chirality, or
multi- versus single-walled type), the conditions established in
the MD simulations for transitioning between distinct physical
regimes of energy dissipation and the characteristic time scales
of energy dissipation in the different regimes provide a solid
foundation for designing a computational description of energy
dissipation in the mesoscopic model. In this section, an outline
of the main principles of the mesoscopic model is followed
by a description of the computational approach designed to
account for the energy exchange between the dynamic degrees
of freedom of the mesoscopic model and the internal thermal
energy of nanotubes. The enhanced mesoscopic model is then
tested by reproducing the energy dissipation in free vibrations
of individual CNTs predicted in the atomistic simulations.

A. Mesoscopic dynamic model of nanotubes

The mesoscopic model”®!! for simulation of CNT-based
materials and nanocomposites adopts a coarse-grained de-
scription of nanocomposite constituents (CNTs and matrix
molecules), with individual CNTs represented as chains of
stretchable cylindrical segments. Each CNT is defined by
the positions of nodes joining neighboring segments, and the
dynamics of a system of interacting CNTs are determined by
solving the equations of motion of classical mechanics for
the positions of all nodes. The forces acting on the nodes are
calculated based on the mesoscopic force field that accounts
for the internal stretching, bending and buckling of nanotubes,
as well as the van der Waals interactions among the CNTs.
The harmonic parts of the stretching and bending potentials
are described by Egs. (1) and (2) and are parameterized’
for single-walled CNTs based on the results of atomistic
simulations performed with the reactive empirical bond-order
(REBO) potential.*® The transition to the anharmonic regime
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FIG. 12. (Color online) The evolution of the energies of the LA, BA, Rad, and HB modes in simulations performed for CNTs equilibrated
at a temperature of 568 K and bent into an arc with a constant radius of curvature equal to 30 nm (a) and 15 nm (b) at time ¢ = 0. In the
right panels, the values of energy are converted to temperature units for each group of modes by dividing the energy values by the product of
the corresponding number of modes present in each group and the Boltzmann constant. The periodic formation of a bending buckling kink in
(b) is reflected in the large oscillations in the stretching and radial energies observed until approximately 50 ps as well as in the faster decay of

the bending energy during this time.

(nonlinear stress-strain dependence), fracture of CNTs under
tension and bending as well as bending and axial shell buckling
behavior are accounted for in the model.

The mesoscopic description of bending buckling is pro-
vided in Ref. 11. The bending buckling is assumed to occur
at mesoscopic nodes of CNTs where the local radius of
curvature RP, reaches a critical value of 27.5 nm, chosen to
be within the range of values predicted in quasistatic atomistic
MD simulations of (10,10) CNTs.**! In the postbuckling
state, the bending potential includes an additional term that
is proportional to the buckling angle and accounts for the
strain energy in a small vicinity of the buckling point. The
parameterization of the bending buckling potential ensures
that the drop in the slope of the bending energy dependence on
the bending angle upon buckling is in quantitative agreement
with the results of atomistic simulations performed for various
single-walled CNTs.!!

The axial shell buckling is assumed to occur in mesoscopic

segments where the compressive strain exceeds |5 = 0.04.

This value of critical strain is within the range of values
predicted for (10,10) CNTs in quasistatic atomistic MD
simulations, e.g., 0.035 for 9.6-nm-long CNTs in Ref. 35, 0.04
for 10-nm-long CNTs in Ref. 34, and 0.0525 for 7-nm-long
CNTs in Ref. 33. The axial buckling results in a transition
from the quadratic to linear dependences of the strain energy
on the axial strain and an abrupt drop in the axial stress.
In the mesoscopic model, the axial buckling in a segment
defined by nodes i and i 4+ 1 is represented by replacing
the corresponding quadratic term in the sum over all of the
mesoscopic segments in Eq. (1) with a linear term, k5% |£é§+l [,
where e ! = ([F"*! — 7| — a)/a. The value of k' is chosen
to satisfy an approximate relation, ky|e2!|/k5 = 2.8. This
relation is based on the results of atomistic simulations, in
which the axial stress of a (10,10) CNT is observed to drop
upon axial shell buckling by a factor of 2.7 in Ref. 34 and by
a factor of 2.9 in Ref. 35. In order to limit the maximum value
of the compressive strain and to allow the buckling region

to extend beyond one mesoscopic segment, this regime of
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FIG. 13. (Color online) Snapshots of atomic configurations in
a simulation of free bending vibrations with an initial temperature
of 1054 K and an initial radius of curvature of 15 nm (bending
regime II). The snapshots are shown for the first half period of the first
bending oscillation after the initial deformation. Atoms are colored
according to their instantaneous kinetic energies, with red indicating
higher energy.

constant axial stress reverts to the quadratic regime with the
same k. used at small strains when the axial strain reaches
gb=maX [see Fig. 15(a)]. The value of |¢2X™™%| controls the
size of the buckling region in the third regime of stretching
oscillations (see Sec. II B) and is chosen to be 0.45 to match
the approximate size of the buckling region, about 5 nm, in the
simulation performed for an initial axial strain of 6% and an
initial temperature of 568 K (see Fig. 10).

The intertube interactions are calculated based on the tubu-
lar potential method®*’ that allows for a computationally effi-
cient and accurate representation of van der Waals interactions
between CNT segments of arbitrary lengths and orientation.
The tubular potential is parameterized to match the atomistic
representation of the intertube interactions (summation over
pairs of interacting carbon atoms) as described within the
AIREBO potential.?® Since the coupling of low-frequency
modes among different CNTs via van der Waals interactions
is explicitly represented in the mesoscopic model and since
there is a relatively slow energy exchange between the low
and high frequency vibrational modes within the CNTs, the
implementation of the acoustic energy dissipation in individual
CNTs, described in the next section, can be expected to ensure
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FIG. 14. (Color online) The rate of energy dissipation from the
excited BA modes as a function of the excess BA energy for
all initial radii of curvature (a) and for initial radii of curvature
greater than the critical value for dynamically forming a bending
buckling kink, approximately 27 nm (b). The vertical dashed line
in (a) marks the critical value of the excess bending energy Ej,
corresponding to the onset of bending buckling and the transition from
the first to the second regime of bending energy dissipation. The data
points are obtained by averaging over ten simulations performed for
each combination of initial bending strain and initial temperature.
Isothermal contours of the fitted function given by Eq. (13) are
shown in (b) for temperatures ranging from 100 to 1200 K. The
temperature-independent fit to the buckling decay rates is shown by
a dashed line in (a).

an adequate representation of the thermalization of mechanical
energy in CNT materials.

In order to facilitate comparison between the results of
mesoscopic and atomistic simulations, the equilibrium length
of CNT segments, 2.6 A, is chosen in this work to ensure
that the number of longitudinal and bending modes in the
mesoscopic model matches the number of CNT unit cells in
the atomistic representation of the CNT discussed in Sec. II.
The corresponding energies associated with these groups of
modes can then be directly related to the predictions of
the atomistic simulations. In practical applications of the
mesoscopic model,”# 1113 however, the equilibrium length
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of CNT segments is typically much longer and can exceed the
length of the unit cell by an order of magnitude. As briefly
discussed in Sec. I A, the use of the longer segments in
the mesoscopic representation of CNTs introduces artificial
cutoff frequencies for LA and BA modes and reduces the
number of acoustic modes that are explicitly represented in
the mesoscopic model. The acoustic modes eliminated by the
coarse graining of the mesoscopic model are joined with the
HB group of modes and are represented by internal heat bath
variables as discussed below.

B. Heat bath approach for mesoscopic description of energy
dissipation

The computational approach developed here for the de-
scription of the thermal properties of CNTs in the mesoscopic
model is based on the introduction of “heat bath” variables
representing the energy content of the vibrational modes that
are not explicitly represented in the coarse-grained mesoscopic
model. The heat bath variables can be associated with each
dynamic element of the model (segment of a CNT) or with the
entire CNT. The latter option is used in the heat bath approach
implemented in this work. While the implementation of local
heat baths associated with CNT segments does not present
technical difficulties, the high values of the intrinsic thermal
conductivity of CNTs, predicted in atomistic simulations®®3
and confirmed experimentally,*>*! and the nonlocal nature
of the low-frequency acoustic modes suggest that long-term
spatial localization of thermal energy in a part of a nanotube
is unlikely.

The heat capacity of the bath can be obtained either
by subtracting the contribution of the dynamic degrees of
freedom from the experimental specific heat of CNTs?*%?7 or
by evaluating its theoretical value based on the equipartition
and virial theorems of classical mechanics. The latter approach
allows for the direct quantitative comparison with the results
of classical atomistic MD simulations and is used in the
test simulations presented in Sec. III C. The exchange of
energy between the internal heat bath and the dynamic
degrees of freedom of the mesoscopic model is designed
such that the rates of energy dissipation established in the
atomistic simulations (see Secs. II B and II C) are reproduced
in the mesoscopic simulations. The results of the atomistic
simulations suggest that the occurrence of axial or bending
buckling results in the rapid thermalization of the energy
of acoustic vibrations on a time scale comparable to several
periods of stretching or bending oscillations. The dissipation
of weakly excited acoustic vibrations at the initial strains that
do not lead to the buckling, on the other hand, is much slower
and takes place on time scales of hundreds of picoseconds
for stretching vibrations and tens of nanoseconds for bending
vibrations. The large disparity between the dissipation rates
with and without buckling necessitates the development of two
complementary methods for describing energy dissipation in
the mesoscopic model.

The slow dissipation of the acoustic vibrations is modeled
by introducing damping forces into the equations of motion in
the mesoscopic model. Due to the large disparity between the
decay rates predicted in the atomistic simulations for stretching
and bending vibrations, it is necessary to apply different
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damping forces for the bending and stretching motions of
the nanotube. To achieve this, the “thermal” velocity of each
node ¥’ (calculated by removing the contributions from the
total linear and angular momenta of the CNT) is decomposed
into stretching and bending components that are parallel and
perpendicular to the local direction of the elastic line of
the CNT, respectively. The velocity components of node i
are calculated as v, = (V' -&)é' and ¥ , = V' — ¥!,. The
damping force acting on node i is then defined as a sum of
two terms affecting the bending and stretching energy of the
nanotube:

F;j = —&gm' Bélr - ébndmla{mdv (14)
where m' is the mass of a part of the nanotube represented by
the node i and the damping coefficients &y, and &g are chosen
to match the energy dissipation rates predicted in the atomistic
simulations, as discussed below. The damping forces are added
to the forces acting on the node due to the mesoscopic force
field discussed in Sec. III A, and the total forces are used in
the integration of the equations of motion of the nodes. Note
that the addition of the damping forces defined by Eq. (14)
may violate conservation of the angular and linear momenta
of the nanotube. To correct for this, the contributions of the
damping forces to the net force and torque acting on the CNT
are calculated and subtracted out. The damping forces are then
renormalized in order to achieve the desired energy transfer
rate.

The energies of stretching and bending vibrations in the
mesoscopic model, Ey, and Eyg, are calculated as a sum of
potential and kinetic energy terms associated with each type
of motion. Since in the test simulations performed in this work
the equilibrium length of the mesoscopic segments is equal to
the length of a CNT unit cell, the energy terms are defined
analogously to the energies of the LA and BA modes in the
analysis of the atomistic results, Eqs. (1)—(4). For a given
temperature 6 of the heat bath modes, the instantaneous decay
rates for the stretching and bending energies are defined by
Egs. (12) and (13). Given that the LA and BA modes represent a
small fraction of all vibrational modes in the CNT, the increase
of E/, and E}, due to the dissipation of the stretching and
bending vibrations (and the corresponding increase of the heat
bath temperature 8) can be expected to be much slower than the
decay of the excited LA or BA modes. Therefore, in order to
simplify the implementation of the heat bath in the mesoscopic
model, the time derivatives of Ef , and E§, in Egs. (12) and
(13) are neglected, and the dissipation of the stretching and
bending energy is described as

~ d(EBA - E}93A)

dEstr ~ d(ELA - E]?A) dEbnd
= and = .
dt dt dt dt

as)

The amounts of energy transferred between the stretching
and bending vibrations and the heat bath modes during a
time step Ar of a dynamic mesoscopic simulation can then
be expressed as

B~ EL) o, A(Er — E)

AE =
o dt dt

At.
(16)
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FIG. 15. (Color online) An illustration of the hysteresis approach
to the localized energy dissipation upon buckling in the mesoscopic
model. The compressive part of the axial strain energy is shown
schematically in (a), and an enlarged view of the hysteresis region
is shown in (b). The blue arrows in (b) represent the path followed
when a buckling kink is created. The red segments of the plot are the
irreversible parts of the strain energy hysteresis. A E%! is the amount
of energy transferred to the heat bath of the CNT in each buckling
cycle.

To carry out the energy transfer, the coefficients &y, and &pyg
in Eq. (14) are defined according to an expression derived in
Ref. 16:

AEg
Ar 3Ly mi (V)

AEpng

At ZzN=1 mi(’j{md)z.
17

Eslr =

5 and &png =
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The coefficients calculated from these equations ensure that
the energy removed from the bending and stretching motions
due to the action of the damping forces is equal to AEg, +
A Eyng. This energy is then deposited into the heat bath, leading
to the heat bath temperature increase, 6(¢ + At) = 0(¢) + A0,
where |

A0 = —(AEq + AEpna) (18)

CHB

and cyp is the heat capacity associated with the heat bath
modes. As discussed above, the theoretical value of the heat
capacity, evaluated by neglecting quantum and anharmonic
effects, is used in the calculations performed in this work.
For a CNT composed of n, atoms and represented in the
mesoscopic model by N nodes, cyg = 3(ny — N)kp.

The sharp increase in the energy dissipation rates at
the onset of buckling is accounted for by adding another
dissipation mechanism involving fast, localized thermalization
in the vicinity of buckling kinks. This mechanism is necessary
because the damping forces are applied globally and remove
energy from all nodes of the nanotube, whereas buckling
occurs locally and results in energy dissipation predominantly
in the vicinity of a buckling kink. A number of initial test
simulations demonstrate that increasing the magnitude of the
damping forces (in order to match the sharp increase in the rate
of energy dissipation upon buckling) results in the preferential
energy removal from nodes that have high velocities, which
are generally not the buckled nodes. As a result, strong
damping results in the persistence of buckling kinks for an
unrealistically large number of periods of oscillation.

In order to overcome this shortcoming, a complementary
approach based on the introduction of hysteresis loops in the
potentials describing the bending and stretching energy of the
segments experiencing buckling deformation is developed.
This hysteresis approach is illustrated in Fig. 15, where the
compressive part of the axial strain energy is shown for a range
of strains including both £?' and e5¢' "™ in Fig. 15(a), and an
enlarged view of the hysteresis region is shown in Fig. 15(b).
A similar hysteresis loop is also introduced in the potential
describing the dependence of the bending strain energy on the
local radius of curvature. The potential remains harmonic up
to the critical buckling strain |¢2%'| and switches to a linear
dependence on the compressive strain in the buckling region
[black curve in Fig. 15(b)]. To enable the localized energy
dissipation, a hysteresis loop is introduced in the potential
by extending the linear regime to axial strains below the
threshold for buckling [red solid line in Fig. 15(b)]. The
transition to the linear regime takes place at a strain !

str 2

where the strain energy experiences a drop by AESbti1 [red

dashed line in Fig. 15(b)]. After unbuckling takes place at
bl=min the energy follows the original form of the potential

(black line in Fig. 15) until the next buckling takes place at

8?@1. In each buckling-unbuckling cycle, the energy AE:ﬁl is

removed from the dynamic simulation and transferred into
the heat bath (i.e., the heat bath temperature increases by
A0 = AE"/cyg). The value of A E! and, therefore, the rate

str str
of the localized stretching energy dissipation in the buckling
regime are controlled by the choice of 2<~™" and can be
chosen to match the predictions of the atomistic simulations.

The value of AE®! is maximized when e2$~™" is chosen

str
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FIG. 16. (Color online) The evolution of the energies of the LA, BA, and HB modes in mesoscopic simulations performed for CNTs
equilibrated at a temperature of 568 K and homogeneously stretched at time # = 0 with initial axial strains of 3% (a) and 6% (b). The analogous
plots for the atomistic simulations are shown in Figs. 3(a) and 3(c). In contrast to the atomistic simulations, the Rad modes are included within

the HB modes in the mesoscopic simulations.

such that the slopes of the quadratic and the linear portions
of the potential are equal at g2I=min Ithis is not the case in
Fig. 15(b), where |¢217™"| = 0.02 is used in the plot, and the
maximum dissipation is achieved at |29 ~™"| = 0.0142]. The
choice of £2¢~™ also affects the rate of energy dissipation, as
the number of buckling kinks in the buckling region of a CNT
increases with decreasing |¢2™™%|. The implementation of
the hysteresis approach to the energy dissipation in bending
buckling is similar to the one described above for the axial
compression. The analogous parameters controlling the energy
dissipation in this case are the unbuckling radius of curvature
REL-™M and the corresponding energy drop A EXCL.

The strain energy hysteresis illustrated in Fig. 15 is similar
to the hysteresis loop observed in strain energy curves pre-
dicted in quasistatic MD simulations of bending buckling,*+?
where the difference between the loading and unloading
curves is attributed to the van der Waals attraction between
the collapsed walls at the kinked site. In the mesoscopic
model, however, hysteresis is not intended to reproduce the
real evolution of the strain energy during the formation
and disappearance of the buckling kinks. Rather, the energy
hysteresis in the mesoscopic model is used as a mechanism
for transferring energy from the acoustic vibrations to the
nanotube heat bath. This hysteresis approach, in which the
energy of bending and stretching vibrations is removed locally
at the buckling kinks in pre-defined amounts, yields better
agreement with the results of the atomistic simulations as
compared to an approach in which only frictional dissipation
is applied by means of damping forces.

In simulations of CNT materials, it is possible to distinguish
between dynamic buckling (when the energy of acoustic
vibrations should be dissipated) and quasi-static buckling in
the course of slow deformation (when the potential energy
should follow the original path on the strain energy curve and
not experience hysteresis). Consideration of the latter case is
not a concern in the dynamic simulations presented below, and

thus no modifications to the model have been made to account
for it. In cases in which quasistatic buckling is important,
however, it would be possible to associate a “clock” with each
buckling event, and the time in the buckled state could be
monitored for each node that experiences buckling. Hysteresis
would only be invoked when the time in the buckled state is
less than predefined values of 55 ™ and #7,"™®*, chosen to
be larger than periods of stretching and bending oscillations,
respectively. If a buckling kink should persist for a longer time,
then unbuckling would proceed through the original path on
the strain energy curve, and no energy transfer to the heat bath
would occur.

Note that in systems composed of multiple interacting
CNTs (such as CNT films, mats, or buckypaper), the in-
teraction among the nanotubes can be expected to facilitate
coupling among vibrational modes and to substantially reduce
the time required to dissipate the mechanical energy in the
absence of buckling. With the introduction of the heat bath and
the two mechanisms of energy dissipation discussed above,
the mesoscopic model can be expected to provide a more
accurate representation of fast dynamic phenomena, such as
the projectile impact illustrated in Fig. 1, in which strong
deviations from thermal equilibrium are expected for different
groups of vibrational modes.

C. Energy dissipation in mesoscopic modeling of free vibrations
of CNTs

A series of mesoscopic simulations of free vibrations
of individual CNTs were performed to test the ability of
the heat bath approach to reproduce the energy dissipation
predicted in the atomistic simulations. Free bending and
stretching simulations were performed for a range of initial
strains covering the different dissipation regimes identified in
Secs. IIB and 1T C.

The energy dissipation in the two stretching regimes,
below and above the threshold for axial buckling (stretching
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regimes I and III, respectively) are illustrated in Fig. 16, where
the evolution of stretching, bending, and heat bath energies is
shown for mesoscopic simulations performed with an initial
temperature of 568 K and two values of initial strain, 3% and
6%. At an initial strain of 3%, the decay rate of the stretching
energy closely follows the prediction of Eq. (12). The plots in
Fig. 16(a) can be directly related to the corresponding plots
in Fig. 3(a) obtained in an atomistic simulation performed for
the same initial strain. The plots are in good agreement, with
the exception of several minor quantitative differences. The
somewhat higher initial stretching energy in the mesoscopic
simulation can be explained by the difference in the interatomic
potentials used in the parameterization of the mesoscopic
model (REBO)’-¢ and in the atomistic simulations performed
in this work (AIREBO)?® as well as by the method used
for the stretching excitation in the atomistic simulations
(instantaneous scaling of atomic positions in the equilibrated
CNT reduces the thermal component of the stretching energy
at the beginning of the simulation). The heat bath in the
mesoscopic model includes the radial modes which are
considered separately in the analysis of atomistic simulations,
leading to higher values of the HB energy in Fig. 16 as
compared to the corresponding plots in Fig. 3.

The rapid dissipation of the stretching energy in stretching
regime I1I, in which the axial buckling of the central part of the
nanotube (e.g., Fig. 10) results in a sharp drop of the stretching
energy [see Fig. 3(c)], is more difficult to reproduce in the
mesoscopic model. With the hysteresis approach described
in Sec. Il B and parameterized to maximize the energy
removed in each buckling cycle (choosing |¢2™"| = 0.0142
ensures a maximum energy drop of AEY! = 0.6935 eV/A),
the decay rate in Fig. 16(b) is still substantially lower than
the one observed in the atomistic simulations [see Fig. 3(c)].
While most of the stretching energy dissipates within the
first 5 ps of the atomistic simulation, the dissipation in the
mesoscopic simulation is slower and takes approximately
40 ps. Although the hysteresis approach does allow for
a relatively fast dissipation of the stretching energy, it is
limited by the maximum energy drop in buckled segments
(AE®! =0.6935 eV/A) and cannot remove all of the energy
that should be transferred to the heat bath in the first buckling
cycle. The rate of the stretching energy dissipation can be
further increased by decreasing the value of |¢29~™%| which
controls the size of the buckling region. In particular, a decrease
of |8;$1_max| from 0.45 to 0.1 results in a substantial increase
in the rate of the stretching energy dissipation (see Fig. 17)
which is closer to that predicted in the atomistic simulation.
The size of the buckling region in this case, however, increases
to approximately 16 nm, which is three times larger than
the size of the buckling region observed in the atomistic
simulations (see Fig. 10). In applications of the mesoscopic
model in which representation of the ultrafast stretching energy
dissipation upon buckling is critical, this artificial expansion of
the effective buckling region could be an appropriate solution.

The slower dissipation of bending vibrations, as com-
pared to stretching vibrations, makes parameterization of the
mesoscopic description of the bending energy dissipation
more straightforward. The energy plots shown in Fig. 18 for
mesoscopic simulations of free bending vibrations performed
for CNTs with an initial temperature of 568 K and initial
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FIG. 17. (Color online) The evolution of the energies of the
LA modes in simulations performed for the same conditions as
in Fig. 16(b) with two values of |29~™®|, 0.45 and 0.1. The
value of e29~™* defines the size of the buckling region, which is
approximately 5 nm for |27™| = 0.45 and approximately 16 nm

for |elI-max) = 0.1,

radii of curvature of 30 and 15 nm exhibit a good agreement
with the corresponding plots obtained in atomistic simulations
(see Fig. 12). The slow rate of the bending energy decay
in Fig 18(a) is defined by weak damping forces added to
reproduce the bending decay parameters given by Eq. (13)
for bending regime 1.

In bending regime II, the faster energy dissipation, shown
in Fig. 18(b), is reproduced with the hysteresis approach.
Preliminary test simulations revealed that, due to the small
size of the CNT segments used in the mesoscopic simulations
(2.6 A), thermal fluctuations superimposed on the large-scale
bending oscillations of the CNT lead to the generation of
“thermal buckling” events, in which the local curvature
transiently exceeds the critical value for buckling due to a
thermal fluctuation. This effect of “thermal buckling” is not
present when a larger segment length (e.g., 2 nm) is used in
the mesoscopic simulations. To reduce the effect of thermal
fluctuations on the energy dissipation rate, the hysteresis is
only applied when the time in the buckled state (see Sec. III
B) exceeds a predefined value, taken to be 100 fs in this
work. With this adjustment, the choice of RFICIL_““ = 3.6 nm
(corresponding to an energy drop of AEEﬁd = 0.026 eV in
each buckling cycle) is found to ensure the same duration of
the first stage of the energy dissipation (approximately 50 ps)
as observed in the atomistic simulation [see Fig. 12(b)]. After
50 ps the buckling kinks cease to appear, and the bending
energy dissipation continues as in bending regime I.

The energy dissipation due to the hysteresis also quenches
the thermal energy of the BA modes and, through dynamic
coupling, the LA modes. This quenching, associated with both
the loss of AE] and the softening of the potential at RS} in
each hysteresis cycle, manifests itself in a decrease of the
stretching energy in Fig. 18(b) from its initial value, EE A=
5.18 eV, down to 2.8 eV within 200 ps. The stretching energy
then slowly recovers to the equilibrium value corresponding
to the current HB temperature 6. The decrease of the thermal
component of the bending energy is masked by the dominant
contribution of the energy associated with low-frequency
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FIG. 18. (Color online) The evolution of the energies of the LA, BA, and HB modes in mesoscopic simulations performed for CNTs
equilibrated at a temperature of 568 K and bent into an arc with a constant radius of curvature equal to 30 nm (a) and 15 nm (b) at time ¢ = 0.
The analogous plots for the atomistic simulations are shown in Figs. 12(a) and 12(b). In contrast to the atomistic simulations, the Rad modes

are included within the HB modes in the mesoscopic simulations.

mechanical vibrations and is not apparent in Fig. 18(b).
The delayed decrease of the energy of the LA modes,
with respect to the duration of the bending buckling energy
hysteresis regime, is explained by the finite time of dynamic
equilibration between the thermal bending and stretching
vibrations. Note that the effect of the strain energy hysteresis on
the thermal vibrations associated with the BA and LA modes
diminishes with increasing mesoscopic segment length and,
in a simulation performed with 2-nm segments, the stretching
energy does not decrease below its initial thermal value.

IV. SUMMARY

The rates and mechanisms of acoustic energy dissipation
in CNTs were investigated in atomistic MD simulations
performed for individual CNTs with different levels of initial
stretching and bending deformation. The analysis of energy
redistribution in simulations of free stretching and bending
vibrations is based on the partitioning of the total energy of a
CNT into contributions of the longitudinal, bending, radial, and
remaining “heat bath” modes. This partitioning enables evalua-
tion of the rates of mechanical energy dissipation and provides
insights into the pathways and critical processes responsible
for the redistribution of energy among the vibrational modes.

For stretching vibrations, the simulations reveal the exis-
tence of three distinct regimes of energy dissipation. At low
levels of the initial excitation, in stretching regime I, a gradual
decay of the energy of the excited LA modes is observed on the
time scale of hundred(s) of picoseconds. For strong excitation,
in stretching regime III, an immediate dissipation of a large
part (75-95%) of the initial stretching energy occurs at a time
scale comparable to one period of stretching oscillations. This
fast thermalization of the stretching excitation is attributed to
the formation of axial shell buckling kink(s) in the central part
of the CNT, where the nanotube experiences strong transient
compression due to the interaction of two unloading waves
propagating from the free ends of the stretched nanotube. The

regimes of the gradual and immediate energy dissipation are
separated by the intermediate stretching regime II, in which
dynamic coupling between the longitudinal vibrational modes
and the radial “squash” mode leads to delayed axial buckling
followed by rapid energy transfer to the higher-frequency
vibrational modes.

As in the case of stretching vibrations, the onset of buckling
plays a prominent role in the damping of bending vibrations
and leads to the identification of two distinct regimes of energy
dissipation. In bending regime I, in the absence of bending
buckling, very slow decay of bending oscillations occurs on
the time scale of tens of nanoseconds. In bending regime II,
in which the recurrent formation and relaxation of bending
buckling kinks is observed, the energy of bending vibrations
dissipates on the time scale of several periods of bending
oscillations. In the absence of buckling, the rates of energy dis-
sipation for both stretching and bending oscillations increase
with increasing temperature and increasing excess energy of
the corresponding vibrational modes. The dependencies of the
decay rates on the temperature and the excess energy, predicted
in the MD simulations for the LA and BA modes, are fitted
to empirical relations and are used in the parameterization of
a mesoscopic model capable of simulating systems consisting
of a large number of interacting CNTs.

The mesoscopic model is advanced by adding a description
of the energy exchange between the dynamic degrees of
freedom of the mesoscopic model and the energy of the
vibrational modes that are not explicitly represented in the
model. Two complementary methods for the description
of mechanical energy dissipation in the mesoscopic model
are developed. The gradual dissipation of acoustic vibrations in
the absence of buckling is described by adding a damping force
to the equations of motion for the dynamic elements of the
mesoscopic model. The computational description of the rapid
dissipation of the energy of the LA and BA modes in the pres-
ence of buckling is based on strain energy hysteresis approach,
which accounts for localized thermalization in the vicinity
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of buckling kinks. The ability of the improved mesoscopic
model to reproduce complex multistep processes of acoustic
energy dissipation, as predicted in the atomistic simulations,
is demonstrated in mesoscopic simulations of free stretching
and bending vibrations of individual CNTs. The addition of the
heat bath approach to the mesoscopic model extends the area
of applicability of the model to dynamic phenomena involving
fast mechanical energy deposition in CNT-based materials.
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