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Auxiliary Material for the paper by A. N. Volkov and L. V. Zhigilei 

“Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials” 

Derivation of Eqs. (1,2, and 4) 

(A) Conductivity of 2D and 3D systems of spherocylinders, Eqs. (1,2) 

 The derivation of the theoretical equations for thermal conductivity is performed for a 

model material composed of straight nanofibers.  Each nanofiber has a shape of soft-core 

spherocylinder (SC), i.e. a circular cylinder of length TL  and external radius TR  capped on its 

both ends by two hemispheres.  The “soft-core” assumption implies that SCs can freely intersect 

with each other and the intersections are treated as thermal contacts between nanotubes.  In real 

materials, the intersections would be accommodated by local bending of the interacting 

nanofibers.  The analysis is performed under assumption that the intrinsic thermal conductivity 

of SCs is infinitely large and the conductivity of the material is governed by the inter-tube 

thermal contact resistance.  As a consequence, every SC i in the sample is characterized by a 

single value of temperature iT  and the heat flux at a contact between SCs i and j is equal to 

)( ijcij TTQ −σ= , where the inter-tube contact conductance, cσ , is assumed to be the same for all 

contacts, 0cc σ=σ . 

To ensure transparent connection between the analytical equations and the results of the 

numerical calculations presented in the paper, we consider finite-size square (in 2D case) or 

cubic (in 3D case) systems with a size of SL .  The distribution of SCs within the systems is 

homogeneous and isotropic, with the total number of centers of SCs defined by the surface 

number density, Sn , and volume number density, Vn , in the 2D and 3D cases, respectively.  It is 

assumed that a constant gradient of averaged temperature, xT∇ , is maintained along the x-axis 

and periodic boundary conditions are applied in the other direction(s) in the system. 

The heat flux through a cross sections of the systems at 0=x  can be calculated as 

∑∑ +δ−= ijijx QQ )( , where 1)( =δ +ij  if SC i intersects axis 0=x  and the point of contact 

between SCs i and j is located to the right of the cross section, otherwise 0)( =δ +ij . The 

derivation of Eqs. (1-2) is based on representation of the ensemble averaged heat flux as 

2/)( )(0)(0 ++ Δσ−=−δσ−= ∑∑ TNNTTQ Jxcijijcx , (S1) 
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where xN  is the averaged number of SCs crossing the plane 0=x , JN  is the averaged 

number of contacts for a SC, and )(+ΔT  is the averaged temperature difference in contacts 

between SCs i and j with 1)( =δ +ij .  From practical point of view, the ensemble averaging 

corresponds to the averaging over all possible random configuration of SCs.  For dense systems 

of SCs, the temperature of a SC is defined mainly by the position of the nanotube center.  

Assuming that cixi xTTT ∇+= 0  ( cix  is the x-coordinate of the nanotube center and 0T  is the 

ensemble averaged temperature of the sample at 0=x ), one can prove that 

)()( ++ Δ∇=Δ xTT x , where )(+Δx  is the averaged difference between x-coordinates of centers 

of interacting SCs, for which the condition 1)( =δ +ij  is satisfied.  For a pair of SCs i and j, the 

difference in x-coordinates is defined as cicj xx −  (Fig. S1). 

The values of xN , JN , and )(+Δx  can be calculated for both 2D and 3D systems of 

soft-core SCs as statistical means of the corresponding random variables.  For calculation of 

JN  and )(+Δx  we use the concept of the excluded volume [15] (excluded area in the 2D case) 

and consider all possible types of junctions between a pair of SCs.  For all types of junctions, the 

point of a junction, J, is assumed to be located in the middle of a line segment connecting the 

closest points on the axes of the cylindrical parts of the intersecting SCs, e.g. points iJ  and jJ  in 

Fig. S1.  Then, for a random (homogeneous and isotropic) distribution of SCs of an arbitrary 

aspect ratio TTT LRR /= , the following expressions for xN , JN , and )(+Δx , can be 

derived: 
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for the 2D system ( Sn  is the dimensionless density parameter defined as 2
TSS Lnn = ), and 
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Figure S1.  Schematic representation of a 

junction between two SCs, i and j.  The 

junction point J is located in the middle of 

a line segment connecting the closest 

points iJ  and jJ  on the axes of the 

cylindrical parts of the SCs.  Points Ci and 

Cj show the centers of the SCs. 
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for the 3D system ( Vn  is the dimensionless density parameter defined as TTVV RLnn 2= ). 

The thermal conductivity of the 2D system, 2Dk , can be determined from the Fourier law 

adopted for the 2D case, Sxx LTkQ  2D∇−= .  Using the expression for the heat flux given by Eq. 

(S1), 2Dk  can be expressed as 

2/) /()/( )(02D TxJxSTc LTTNNLLk ∇Δσ= + . (S8) 

By inserting Eqs. (S2-S4) into Eq. (S8), the theoretical solution for the thermal conductivity of a 

dense 2D system given by Eq. (1) is obtained. 

Similarly, the thermal conductivity of the 3D system, 3Dk , can be determined from the 

Fourier law, 2
3D  Sxx LTkQ ∇−= .  Using the expression for the heat flux given by Eq. (S1), we 

obtain 

2/) /()/( )(
2

03D TxJxSTc LTTNNLLk ∇Δσ= + . (S9) 

By inserting Eqs. (S5-S7) into Eq. (S9), the theoretical solution for the thermal conductivity of a 

dense 3D system given by Eq. (2) is obtained. 
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(B) Out-of plane conductivity of a quasi-2D film, Eq. (4) 

The out-of-plane thermal conductivity of a film composed of 2D layers of SCs stacked on 

top of each other with interlayer distance zΔ , film
zzk , is calculated assuming that all SCs in a 2D 

layer have the same temperature.  The averaged heat flux through any junction between SCs 

from neighboring layers is then equal to zTQ zcij Δ∇σ−= 0 , where zTzΔ∇  is the averaged 

temperature difference between adjacent layers and zT∇  is the temperature gradient maintained 

in the sample in the z-direction that is normal to the 2D layer.  The averaged heat flux in z-

direction can be represented in the form zTnLQnLQ zJScijJSz Δ∇σ−== 2
0

2 , where Jn  is 

the total number of junctions between pairs of SCs from different adjacent layers per unit area of 

a layer.  For high-aspect-ratio SCs ( 1<<TR ), and assuming homogeneous and isotropic 

distribution of SCs in the 2D layers, one can find 
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The out-of-plane conductivity can then be expressed from the Fourier law 2 Sz
film

zzz LTkQ ∇−= , 

which gives 

znk Jc
film

zz Δσ= 0 . (S11) 

By inserting Eq. (S10) into Eq. (S11), the out-of-plane conductivity of the film given by Eq. (4) 

is obtained. 


