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The results of molecular dynamics (MD) simulations
of the crystallization process in one-component
materials and solid solution alloys reveal a complex
temperature dependence of the velocity of the
crystal–liquid interface featuring an increase up to
a maximum at 10–30% undercooling below the
equilibrium melting temperature followed by a
gradual decrease of the velocity at deeper levels
of undercooling. At the qualitative level, such
non-monotonous behaviour of the crystallization
front velocity is consistent with the diffusion-
controlled crystallization process described by the
Wilson–Frenkel model, where the almost linear
increase of the interface velocity in the vicinity
of melting temperature is defined by the growth
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of the thermodynamic driving force for the phase transformation, while the decrease in atomic
mobility with further increase of the undercooling drives the velocity though the maximum
and into a gradual decrease at lower temperatures. At the quantitative level, however, the
diffusional model fails to describe the results of MD simulations in the whole range of
temperatures with a single set of parameters for some of the model materials. The limited
ability of the existing theoretical models to adequately describe the MD results is illustrated
in the present work for two materials, chromium and silicon. It is also demonstrated that the
MD results can be well described by the solution following from the hodograph equation,
previously found from the kinetic phase-field model (kinetic PFM) in the sharp interface limit.
The ability of the hodograph equation to describe the predictions of MD simulation in the
whole range of temperatures is related to the introduction of slow (phase field) and fast
(gradient flow) variables into the original kinetic PFM from which the hodograph equation
is obtained. The slow phase-field variable is responsible for the description of data at small
undercoolings and the fast gradient flow variable accounts for local non-equilibrium effects at
high undercoolings. The introduction of these two types of variables makes the solution of the
hodograph equation sufficiently flexible for a reliable description of all nonlinearities of the
kinetic curves predicted in MD simulations of Cr and Si.

This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.

1. Introduction
Kinetics of solid–liquid interface in metals and alloys was widely investigated experimentally
[1–5], in molecular dynamics (MD) simulations [2,6–16], and theoretically, with the diffusion-
limited theory (DLT) [17,18] and the collision-limited theory (CLT) [19,20]. Special attention has
been devoted to the nonlinear [21] and often non-monotonous [2,6–16] temperature dependence
of the crystal growth velocity during rapid solidification, which manifests itself at high
thermodynamic driving force for the phase transformation [22–24]. It has been shown [25]
that the traditional kinetic theories, such as CLT and DLT, as well as the phase-field models
(PFMs) based on local thermodynamic equilibrium [26], often fail to quantitatively describe the
nonlinear behaviour in the crystal growth velocity predicted in MD simulations. While the local
equilibrium PFMs can describe the nonlinear dependence of the interface velocity predicted in
MD simulations in a relatively narrow temperature range [27], the extension of this description to
a wider range of undercoolings, where the velocity goes through the maximum and slows down
with increasing undercooling [2,7–16], still presents a challenge.

A formulation of the PFM accounting for both slow variables evolving on the timescale of
classical thermodynamic variables (e.g. internal energy, chemical potential and phase field) and
fast variables with relaxation times typical of kinetic variables (e.g. fluxes and gradient flows)
[28–30] allows us to combine local equilibrium and local non-equilibrium effects in the phase
transformation occurring at low and high undercoolings, respectively. Using the sharp interface
limit of the hyperbolic equation derived from the kinetic PFM, the Gibbs–Thomson-type equation
has been obtained [31,32]. This equation has a form of the hodograph equation that relates the
interface acceleration and velocity to the interface curvature and the driving force for the phase
transformation. The interface velocity predicted by this equation has been shown to be in good
agreement with the results of MD simulations performed for pure metals and alloys [25,32–35].

In the present work, we illustrate the ability of the kinetic PFM formulated in the form of
the hodograph equation to provide an adequate description of the velocity of crystal–liquid
interface predicted in MD simulations for two elemental systems with different crystal structures,
namely, body-centred cubic (bcc) Cr and diamond cubic (dc) Si. For both systems, the MD
simulations of steady-state propagation of the crystal–liquid interface predict the characteristic
bell-shaped velocity–temperature curves exhibiting maxima at approximately 0.75Tm for Cr
and approximately 0.85Tm for Si. The Wilson–Frenkel model based on consideration of the
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diffusion-limited kinetics of the interface is found to provide an adequate description of the MD
data for Si, albeit only when independently determined temperature dependences of the liquid
phase atomic diffusivity and latent heat of melting are included. The Wilson-Frenkel model,
however, cannot be consistently applied to the description of the MD results for Cr, where the
activation energy associated with the mobility of atoms in the liquid phase has to be changed
by more than a factor of three between the two branches of the bell-shaped interface velocity
curve. In the absence of a unified theoretical description of the MD data, the phase-field solution
of the hodograph equation provides an attractive alternative and is demonstrated to be capable
of an accurate continuum-level description of the interface kinetics for both Cr and Si. While
the results reported in this paper are promising, clear physical interpretation of the parameters
and assumptions of the PFM requires further detailed analysis of the atomic-scale mechanisms
controlling the mobility of the crystal–liquid interface.

2. Molecular dynamics simulation

(a) Computational method
Two series of MD simulations are performed for Cr and Si solid–liquid coexistence systems
maintained at different temperatures and zero pressure. The interatomic interactions are
described by the embedded atom method (EAM) potential parametrized for Cr [36] and the
modified Tersoff potential for Si [37]. The two potentials provide computationally efficient
yet sufficiently accurate descriptions of real Cr and Si, including lattice parameters, cohesive
energy, elastic constants and their temperature dependences, and vacancy formation energies. The
equilibrium melting temperatures, Tm, obtained from MD simulations performed for solid–liquid
coexistence systems under conditions of constant zero pressure and defined as temperatures
when the interface velocities reach zero, are 2332 K for EAM Cr [38] and 1681 K [37] for Si.

The temperature dependence of the velocity of solid–liquid interface is evaluated in
MD simulations performed for solid–liquid coexistence systems with dimensions of about
3 × 3 × 100 nm3 (70 000 atoms) and about 22 × 22 × 50 nm3 (1 228 800 atoms) for Cr and Si,
respectively. The computational systems, schematically illustrated in figure 1, consist of liquid
and solid parts forming two interfaces perpendicular to the [001] direction in the cubic crystal
structures. Periodic boundary conditions are applied in all three directions, so that a model system
effectively represents a periodic arrangement of infinitely wide liquid and crystalline layers. The
coexistence systems for Cr and Si are prepared using different procedures. For Cr, the procedure
is illustrated in figure 1. The liquid layer within the initially fully crystalline system is generated
by superheating the corresponding part of the system above the limit of thermodynamic stability
of the crystalline material against the onset of homogeneous melting, approximately 1.2–1.3Tm

[39,40], to induce rapid homogeneous melting. At the same time, another part of the system is
maintained at a temperature slightly below the melting temperature to preserve the crystalline
structure of the solid layer. Following this step, the coexistence systems are relaxed at the
equilibrium melting temperature and then rapidly cooled to desired temperatures below Tm. For
Si, the liquid and crystal parts are prepared and equilibrated at a desired temperature above or
below Tm separately, in two independent simulations. The simulations are performed in systems
having the same lateral (x and y) dimensions that correspond to zero pressure in the crystalline
system at a desired temperature. The coexistence systems are then created by combining a 40 nm
thick liquid slab with a 10 nm thick crystalline slab for simulation of crystallization and a 10 nm
thick liquid slab with a 40 nm thick crystalline slab for simulation of melting.

The simulations of crystallization and, in the case of Si, melting are performed under
conditions of constant zero pressure, maintained by scaling the system in the direction of the
longest axis normal to the crystal–liquid interfaces using the Berendsen barostat algorithm
[41]. The lateral sizes of the computational systems, in the directions parallel to the crystal–
liquid interfaces, are fixed so that the lattice parameters in the crystalline parts are equal to the
equilibrium values at the desired temperatures and zero pressure. In order to avoid the local
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Figure 1. Schematic illustration of the thermal treatment used in the preparation of crystal–liquid coexistence systems for
MD simulations of the crystallization process. The red line shows the thermal history of a part of the system that is heated
above the Tm and undergoes melting. The blue line corresponds to a part of the system that is kept below Tm and preserves its
crystalline state. The snapshot of an atomic system in the diagram represents a computational set-up for MD simulation of the
crystallization process under controlled temperature, Tx , and zero pressure conditions. (Online version in colour.)

increase in the temperature at the rapidly advancing interface due to the release of the heat of
melting [11,42,43], each system is divided into layers with thickness of 3 nm and 4 nm for Cr and
Si, respectively, and the temperature is controlled through Berendsen thermostat algorithm [41]
applied independently to each layer. This method eliminates the temperature variation across the
length of the system and ensures that the temperature at the moving crystallization front is close
to the nominal temperature Tx maintained in the simulation.

The crystallization front velocities are calculated in simulations of steady-state propagation of
the two crystal–liquid interfaces present in the coexistence systems, as illustrated in figure 1. For
Si, the crystal–liquid interface velocity is calculated as [44], V = vs�vtot/[2Axy(vs − vl)�t], where
vs and vl are the average atomic volumes associated with the solid and liquid phases, respectively,
at a temperature used in the simulation, �vtot is the change of the total volume of the crystal–
liquid coexistence system during time period �t, and Axy is the cross-sectional area along the
x–y plane parallel to the crystal–liquid interfaces. The factor of 2 in the denominator is due to
the presence of two interfaces in the coexistence system. For the Cr system, the positions of the
crystal–liquid interfaces are directly monitored every 5 ps by the following method. The atomic
configurations generated in the course of a simulation are quenched for 1 ps using a velocity
dampening technique, where the velocity of each individual atom is set to zero at the time when
the kinetic energy of the atom maximizes. The fast quenching does not introduce any structural
changes to the atomic configurations but makes the visualization and structural analysis more
straightforward. The quenched systems are then divided into 700 layers parallel to the solid–
liquid interface, so that each layer in the solid phase includes one atomic plane. The planes with
crystalline ordering are identified based on structural analysis and potential energy of atoms, and
the average positions of the two ordered atomic planes adjacent to the liquid phase are taken as
the positions of the crystal–liquid interfaces. The velocity of the interface is evaluated by tracking
the movement of the two liquid–crystal interfaces present in the coexistence systems [16].

The temperature dependence of the crystallization front velocity is evaluated in series of
simulations performed at temperatures ranging from Tm down to 0.10Tm for Cr and from
0.95Tm down to 0.75Tm for Si. These temperature ranges are covered with an increment of
0.05Tm for these two systems. In total, the crystallization front velocities are evaluated in 17
simulations of Cr and 5 simulations of Si crystal–liquid coexistence systems. For the Si system,
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three additional simulations are performed in the melting regime, at temperatures of 1.07Tm,
1.13Tm and 1.19Tm. All simulations, except those performed for Cr at T = Tm and T = 0.1Tm, are
continued until the complete crystallization or melting of the systems. We note that the onset of
the homogeneous nucleation of new crystallites under conditions of deep undercooling down
to approximately 0.7Tm and below, observed in earlier simulations performed for fcc metals
[16], can potentially complicate the evaluation of the crystallization front velocity. While no
homogeneous crystallization is observed in the simulations of Si, the homogeneous nucleation
of small crystalline structures is detected inside the undercooled liquid phase in simulations of
Cr performed at 0.60Tm and 0.65Tm. Owing to the low fractions of these structures, however, they
do not affect the velocity of the crystallization front in any significant way and do not prevent a
reliable evaluation of the steady-state interface velocities at these temperatures.

The velocities of the solid–liquid interface obtained in the simulations are used for fitting
the kinetic equation, as described in §2b. In order to define the standard deviation of the
interface velocity data points, the simulations are repeated for each temperature three times
for the Cr and four times for the Si system, with each simulation starting from different initial
conditions. For Cr, the velocities of the two interfaces present in each coexistence system are
evaluated independently. As a result, six and four independently calculated values of the interface
velocity are obtained for each temperature for Cr and Si, respectively. These values are then
used in the calculation of the standard deviations of the data points in the velocity—temperature
dependences predicted in the MD simulations.

(b) Results of MD simulations
The temperature dependences of the solid–liquid interface velocity predicted in MD simulations
of two model materials, Cr and Si, are shown in figure 2. In general, the two dependences exhibit
some similarities, particularly at low to moderate levels of undercooling extending down to
approximately 0.75Tm for Cr, and approximately 0.85Tm for Si. Within this range of temperatures,
the crystallization front velocity increases with decreasing temperature in a similar manner
for the two materials, reaching the maximum values of approximately 150 m s−1 for Cr and
approximately 14 m s−1 for Si. With further temperature decrease, the initial increase of the
interfacial velocity is followed by a steady decrease that brings the velocity down to the levels
that cannot be resolved in an MD simulation at approximately 0.1Tm for Cr and approximately
0.7Tm for Si.

The temperature dependences of the crystal–liquid interface velocity obtained in this work for
Cr and Si are consistent with the results of earlier MD simulations, where a gradual decrease of the
velocity from the maximum value down to zero is reported for most of the bcc metals [7,12,13,16]
and Si [14,15].

The temperature dependences of the crystallization velocity predicted in MD simulations of
Cr cannot be consistently fitted to any single kinetic equation suggested for the description of
the crystallization process [17,18,45–47]. Therefore, following an approach suggested in ref. [13],
the velocity of the crystallization front is described here by two kinetic equations independently
fitted in the lower and higher temperature regimes.

In the temperature range from Tm down to 0.7Tm, the velocity of the crystallization front is
described by the Wilson–Frenkel equation based on the phenomenological transition state theory
that considers the exchange of atoms between the liquid and crystal phases at the interface [47]:

V(T) = Ch(T) exp
(−Qh

kBT

) [
1 − exp

(
−�G(T)

kBT

)]
, (2.1)

where �G = Gl − Gs is the difference in the free energy of the solid and liquid phases, Qh
is the activation energy associated with the mobility of atoms in the liquid phase, kB is the
Boltzmann constant and Ch is a coefficient that depends on the interatomic spacing, the frequency
of atomic vibrations, and the average thermal velocity of atoms in the liquid phase. The free
energy difference is approximated as �G(T) ≈ �Hm(Tm − T)/Tm, where �Hm is the latent heat
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Figure 2. Crystal–liquid interface velocity versus normalized temperature predicted in MD simulations of EAM Cr (a) and
modified Tersoff Si (b) crystal–liquid coexistence systems (dark diamonds). The light blue region on the left side of (a) and
(b) in each diagram represent the amorphous state of the material, with the glass transition temperatures Tg determined for
the two model materials as described in the text. The error bars represent the standard deviation obtained from the results of
three and four sets of simulations performed for Cr and Si, respectively, each starting at different initial conditions. In (b), the
error bars are comparable to the size of the symbols representing the data points and are not shown. In (a), the red solid and
dashed lines represent the fitting of the MD results to equations (2.1) and (2.2), respectively, while the black parts of the solid
and dashed lines correspond to the temperature ranges where the equations do not match the results of the simulations. The
inset in (b) shows the data points for melting front propagation at 1.07Tm, 1.13Tm and 1.19Tm used for fitting the pre-factor C0
in equation (2.3). The velocities predicted by equation (2.3) are depicted by red circles connected by the red curve. The positive
and negative values of the velocity correspond to crystallization and melting, respectively. (Online version in colour.)

of melting at Tm evaluated in a separate set of MD simulations performed for the liquid and
solid EAM Cr (�Hm = 22.6 kJ mol−1 = 0.234 eV atom−1 [36]). The remaining two parameters of
equation (2.1), determined by fitting to the data points in the range of Tm > T > 0.7Tm, are
Ch = 14 013 m s−1 and Qh = 0.511 eV for the EAM Cr.

With these fitting parameters, equation (2.1) provides an adequate description of the close-to-
linear increase of the interface velocities with decreasing temperature at small undercoolings,
at T < 0.9Tm, where the crystal–liquid interface velocity is largely defined by the increase
in the thermodynamic driving force for the phase transformation, �G(T). The nearly linear
regime is followed by gradual weakening of the dependence and eventual transition through a
maximum upon further increase of the undercooling, where the decrease in atomic mobility with
increasing undercooling, accounted for by exp( − Qh/kBT) in equation (2.1), starts to dominate
the temperature dependence. The maximum value of the interface velocity determined in MD
simulations and the corresponding temperature of 0.75Tm for Cr is still described reasonably well
by equation (2.1).

The decrease of the crystallization front velocity with further increase of the undercooling
predicted by the equation, however, is substantially faster than that observed in MD simulations,
as can be seen from the deviation of the data points from black solid curves in figure 2a. Given
the inability of equation (2.1) to describe the interface velocities in the low-temperature regime,
the results of the MD simulations at T < 0.7 Tm are fitted to a simple Arrhenius expression:

V(T) = Cl exp
(

− Ql

kBT

)
. (2.2)

Fitting of equation (2.2) to the MD results yields values of Cl = 453 m s−1 and Ql = 0.156 eV
for Cr. While equation (2.2) can be considered as an approximation of equation (2.1) under
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conditions of the large thermodynamic driving force, the more than threefold reduction of the
apparent activation energy Ql with respect to Qh suggest that a consistent description of the
crystallization kinetics in terms of thermally activated atomic rearrangements at the interface is
not possible. The large drop of the effective activation energy observed for Cr points to a change
in the dominant microscopic mechanisms responsible for the advancement of the crystallization
front in the low-temperature regime, below 0.7Tm.

The transition to the region with weaker, as compared to the prediction of the Wilson–
Frenkel equation, temperature dependence of the crystallization front velocity is observed at
the levels of undercooling approaching the glass transition temperature Tg. For the EAM Cr,
Tg = 810 K = 0.35Tm is determined [48] from the temperature dependence of the second moment
of the atomic-level hydrostatic stress distribution, following a method suggested in ref. [49]
Although, at the qualitative level, the sharp drop in the apparent activation energy in bcc Cr
can be attributed to the limited relaxation of glass or deeply undercooled liquid in the vicinity of
the crystallization front [13,50], a reliable predictive analytical model of the crystallization front
propagation in the absence of full relaxation of the disordered phase is still lacking for this regime.

The temperature dependence of the solid–liquid interface velocity for Si, figure 2b, appears
to be similar to that for Cr, featuring an increase of the solidification velocity with the degree
of undercooling followed by a gradual decrease down to zero at approximately 0.7Tm, when Si
turns into an amorphous state. The maximum solidification front velocity of Si, approximately
14 m s−1, is reached at approximately 0.85Tm and is significantly lower than that of the Cr system
discussed above. By contrast to Cr, the temperature dependence of the solid–liquid interface
velocity can be reasonably well described by the Wilson–Frenkel expression, equation (2.1), with
a single set of parameters. In fitting the results of MD simulations of the crystallization front
propagation for Si (shown by dark diamonds in figure 2b), we use the temperature dependences
of the atomic self-diffusivity in liquid phase D(T) and latent heat of melting �H(T) determined in
an additional set of MD simulations performed under well-controlled temperature and pressure
conditions at temperatures ranging from 1200 to 2000 K. Assuming D(T) = D0exp(− Qh/kBT) and
Ch(T) = C0D0exp(−�H(T)/kBTm), equation (2.1) can then be rewritten as follows:

V(T) = C0D(T)
[

exp
(

−�H(T)
kBTm

)
− exp

(
−�H(T)

kBT

)]
. (2.3)

The only fitting parameter, a constant pre-factor C0 = 1.12 × 1011 m−1, is fitted to the melting
front velocities at 1800 K, 1900 K and 2000 K predicted from the crystal–liquid coexistence MD
simulations described above, as shown in the inset of figure 2b. The interface velocities predicted
by equation (2.3) are plotted as red dots connected by the red line in figure 2b. Even though the
crystallization front velocities calculated in MD simulations are not used in the fitting of equation
(2.3), they are still described reasonably well by the kinetic equation. For temperatures lower than
approximately 0.7Tm, the solidification velocity approaches zero and the analysis of the atomic
structure reveals the transformation of the supercooled liquid to the amorphous state. We note
that the temperature dependence of the liquid phase atomic diffusion, D(T), is found to exhibit a
non-Arrhenius dependence at strong levels of undercooling, with the effective diffusion barrier
changing from 0.49 eV fitted in the temperature range of 0.89 Tm < T < 1.19Tm to 2.61 eV fitted for
temperatures 0.71Tm < T < 0.82Tm.

The temperature of the transition to the amorphous state is determined from the temperature
dependence of the Abraham factor gmin/gmax [51] calculated from the pair distribution function,
where gmin and gmax correspond to the magnitudes of the pair distribution function at the first
minimum and first maximum, respectively. The temperature dependence of the Abraham factor
reflects a structural transition from an undercooled high-density high-coordinated liquid to a
low-density tetrahedrally coordinated liquid [52] as the temperature decreases from 0.83Tm to
0.71Tm. This transition has also been observed in other computational studies and recognized as
the liquid–amorphous phase transformation [53,54]. Thus, a temperature of 0.71Tm is denoted as
the glass transition temperature Tg of the model Si material in figure 2b.
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As noted above, the strong nonlinearity of the crystallization front velocity may be related to
the temperature-dependent role of relaxation processes in the vicinity of the interface, although
the underlying physical mechanisms are still unclear. Phenomenologically, the role of the
relaxation processes in crystal growth at the small and high driving forces can be described by
the analysis of the solution of the kinetic PFM [34]. By introducing the relaxation of phase field
(as a slow thermodynamic variable) and the relaxation of the gradient flow of phase field (as
a fast thermodynamic variable), one can describe the growth of crystals modelled in atomistic
simulations in various systems (Fe, Ni, Cu50Zr50 and Ni50Al50) with reasonable values of material
constants and model parameters. Remarkably, when the relaxation of the gradient flow in the
PFM is neglected, the growth kinetics can only be described in limited regions of undercooling
(e.g. see the results of calculations in ref. [25] for crystal growth kinetics in Fe). Therefore, in
addition to the Wilson–Frenkel model, equations (2.1) and (2.3), we apply the kinetic PFM to the
description of the MD results for Cr and Si in the next section.

3. Phase-field model predictions

(a) The hodograph equation
Using kinetic PFM [34], the hodograph equation has been derived and solved in steady-state
approximation for pure and binary systems in a manner consistent with the travelling wave
solution of the PFM [30–32]. This equation takes into account relaxation of the phase field φ

and relaxation of the gradient flow ∂φ/∂t as independent thermodynamic variables (t stands
for time), which provide description of phase transformations at small and large driving forces,
respectively. Subsequently, the solution of these hyperbolic type equations yields [31,32]:

— the velocity-dependent interface width,

�(t) = ηint

⎡
⎣1 − V2(t)

(VB
φ )

2

⎤
⎦ , V(t) ≤ VB

φ , (3.1)

— and the hodograph equation,

τφA[
1 − V2/(VB

φ )
2
]3/2 + V[

1 − V2/(VB
φ )

2
]1/2 =M�G +

[
τφ(VB

φ )
2
]
κ

[
1 − V2/(VB

φ )
2
]1/2 , (3.2)

where ηint is the equilibrium interfacial width, V is velocity normal to the interface, VB
φ is the

maximum speed of the phase-field propagation in bulk phases, τφ is the relaxation time of
the gradient flow ∂φ/∂t, A is the acceleration of phase-field propagation, M is the interface
migration mobility, κ is the curvature of the interface and �G stands for the unified driving force
presented by the difference of the Gibbs free energy: �G > 0 defines solidification and �G < 0
defines melting. Note that the expressions of ηint, M and τφ depend on the used approach
(effective mobility approach and kinetic energy approach) and the form of used potential (double-
well or double-obstacle potentials) [31,32]. In particular, using the kinetic energy approach and
double-well potential, the mobility of interface migration M is given by M= ν/σ , and the
maximum speed VB

φ of the phase-field propagation can be defined as VB
φ = (ν/τφ)1/2, where ν

is the phase-field diffusion parameter and σ is the solid–liquid interface energy.
Owing to the inclusion of acceleration and high interface velocity, equation (3.2) represents a

general case of a Gibbs–Thomson interfacial condition. This condition can be used in the steady-
state regime with constant interface velocity (A= 0, V = const and � does not depend on time), as
well as in the non-stationary regimes of interface propagation (A �= 0 and V �= const).

As the interface velocity V increases, the velocity-corrected interface thickness � becomes
smaller according to equation (3.1) and, in the limit of V → VB

φ , one gets �→ 0. This limiting
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case corresponds to the transition from the diffuse to the sharp interface. Otherwise, the normal
velocity of the interface, V, cannot exceed the maximum speed VB

φ of the propagation of a
disturbance in the phase-field, V � VB

φ , as the phase field itself dictates the position of the
interface, its velocity and acceleration.

(b) Steady-state regime
In the case of a planar interface rapidly propagating with a constant velocity (V = const and κ = 0),
the hodograph equation (3.2) gives

V = μk(�Tk)�Tk√
1 + [μk(�Tk)�Tk/VB

φ (�Tk)]
2

, (3.3)

where μk is the kinetic coefficient dependent on the kinetic undercooling, �Tk, and the driving
force �G has been approximated for a pure (one-component) system as �G ≈ �Hm�Tk/Tm [55].

The denominator in equation (3.3) appears as the result of the relaxation of the gradient flow
∂φ/∂t, and the contribution of the square root becomes essential at high undercoolings. Indeed, as
equation (3.3) predicts, the interface velocity is linearly proportional to the undercooling, V ∝�Tk,
at small levels of undercooling, i.e. when μk�Tk � VB

φ . With the increase of undercooling, the
square root in denominator of equation (3.3) becomes more and more significant, which should
lead to the nonlinearity and eventual decrease of the interface velocity V.

In equation (3.3), the kinetic coefficient μk depends on the undercooling �Tk as

μk(�Tk) = Dφ(�Tk)�Hm

σTm
, (3.4)

and the maximum speed of the phase-field propagation VB
φ is defined by the diffusion coefficient

of the phase field Dφ and relaxation time of the gradient flow τφ as

VB
φ (�Tk) =

√
Dφ(�Tk)/τφ . (3.5)

In the present analysis, the relaxation time τφ is assumed to be independent of temperature,
and the diffusion coefficient of phase field in equations (3.4) and (3.5) is

Dφ(�Tk) = D0
φexp

(
− EA

Tm − �Tk − TAB

)
, (3.6)

where the diffusion pre-factor D0
φ , the energy barrier EA and the pseudo-glass transition

temperature TAB are the parameters of the PFM. The temperature TAB controls the temperature at
which a drastic change in the crystal growth kinetics may occur. For example, an abrupt drop of
the interface velocity is possible at undercooling that corresponds to the temperature TAB [25,34].

By substituting equation (3.6) into equation (3.5), the expression of the maximum speed of the
phase-field propagation VB

φ becomes

VB
φ (�Tk) = V0

φexp
(

−1
2

EA

Tm − �Tk − TAB

)
, (3.7)

with the pre-factor V0
φ =

√
D0

φ/τφ defining the maximum speed of the phase-field propagation.

(c) Comparison with MD simulation data
The results of MD simulations discussed for Cr and Si in §2b are related in this section to the
solution of PFM, particularly, for the steady-state case, equations (3.3)–(3.7). This solution type
has previously been applied to describe the MD data on the crystallization of Fe [7], Cu50Zr50 and
Ni50Al50 [10] (see refs [25,32,33]). The material parameters used in PFM for Cr and Si are shown
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Figure 3. The dependence of crystal–liquid interface velocity on undercooling described by PFMwith relaxation (τφ �= 0, VBφ
is finite) and PFM without relaxation (τφ = 0, VBφ → ∞) fitted to MD results (dark diamonds) for Cr (a) and Si (b). Dashed
curves show the predictions of PFM without relaxation, at the limit of τφ → 0 and VBφ → ∞, and with denominator in
equation (3.3) set to unity in the calculations. The fitting for Si (b) is done to the interface velocities calculated with theWilson–
Frenkel equation, equation (2.3) (red circles [57]). Tables 1 and 2 summarize thematerial parameters used in the calculations for
Cr and Si, respectively. (Online version in colour.)

Table 1. Material parameters of Cr used in PFM calculations.

parameter set 0a set 1a set 2a source

latent heat,�Hm (J m−3) 3.13× 109 3.13× 109 3.13× 109 [36]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

melting temperature, Tm (K) 2332 2332 2332 [38]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average solid–liquid interfacial energy,σ 0 (J m−2) 0.2078 0.2078 0.2078 [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anisotropy parameter, ε1 0.024 0.024 0.024 [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anisotropy parameter, ε2 0.002 0.002 0.002 [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid–liquid interfacial energy,σ = σ 001 (J m−2)b 0.185 0.185 0.185 [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pseudo-glass transition temperature, TAB (K) 0 0 0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

relaxation time of gradient flow, τφ (s) 0 1.48× 10−12 →0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion pre-factor, D0φ (m
2 s−1) 3.33× 10−7 3.29× 10−7 3.29× 10−7 present work

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pre-factor, V0φ (m s−1) →∞ 471.74 →∞ present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

energy barrier, EA (K) 3892.35 3166.17 3166.17 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aSet 0 without relaxation, set 1 with relaxation and set 2 without relaxation at the limit of Tφ → 0 and VBφ → ∞.
bσ 001 = σ 0(1− (18/5)ε1 − (80/7)ε2) [56].

in tables 1 and 2, respectively, where the relaxation time of gradient flow, τφ , the diffusion pre-
factor, D0

φ , and the energetic barrier, EA, are considered as free parameters at a fixed pseudo-glass
transition temperature TAB.

Figure 3a shows three bell-shaped curves related to the steady-state growth of Cr crystal given
by equations (3.3)–(3.7) fitted to MD data for Cr for the crystallization with relaxation (τφ �= 0, VB

φ is
finite), without relaxation (τφ = 0, VB

φ → ∞), and without relaxation at a limit of (τφ → 0, VB
φ → ∞).

This latter approximation corresponds to the case where the denominator (square root function)
in equation (3.3), becomes equal to unity, i.e. with set 2 from table 1. Figure 3b represents the
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Table 2. Material parameters of Si used in PFM calculations.

parameter set 0a set 1a set 2a source

interfacial energy,σ (J m−2) 0.0416 0.0416 0.0416 [15]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

melting temperature, Tm (K) 1681 1681 1681 [37]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

latent heat,�Hm (J m−3)b 2.66× 109 2.66× 109 2.66× 109 [57]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pseudo-glass transition temperature, TAB (K) 700 700 700 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

relaxation time of gradient flow, τφ (s) 0 2.61× 10−13 →0 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diffusion pre-factor, D0φ (m
2 s−1) 3.54× 10−8 4.10× 10−8 4.10× 10−8 present work

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pre-factor, V0φ (m s−1) ∞ 400.2 →∞ present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

energy barrier, EA (K) 2508.9 2621.6 2621.6 present work
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aSet 0 without relaxation, set 1 with relaxation and set 2 without relaxation at the limit of Tφ → 0 and VBφ → ∞.
bArithmetic average of all values obtained for different temperatures in ref. [57].

descriptions of both crystallization and melting fitted to MD data for Si using the linear and
nonlinear relationships, such as those discussed above for Cr.

The curves calculated without relaxation of gradient flow (τφ = 0) give the linear relationship
between the interface velocity and undercooling, V = μk(�Tk)�Tk. These curves fail to describe
data of atomistic modelling (see dotted curve obtained with set 0 from table 1 providing the best
fit to MD data of Cr). Taking into account the relaxation of gradient flow (τφ �= 0), one gets a
nonlinear relationship between the interface velocity and undercooling provided by equations
(3.3)–(3.7) in the entire undercooling range. In this case, the MD data for Cr are well described
(see solid curve in figure 3a obtained with set 1 from table 1). Otherwise, without relaxation of
gradient flow (τφ → 0), the solution of equations (3.3)–(3.7) can describe the MD results for Cr only
at small levels of undercooling (see dashed curve in figure 3a obtained with set 2 from table 1).
A similarly good agreement has also been obtained between the results of MD simulations of
crystallization and melting of Si and the nonlinear equations (3.3)–(3.7) with relaxation taken into
account (τφ �= 0, VB

φ is finite) (see solid curve in figure 3b obtained with set 1 from table 2).
The crystallization kinetics of Cr as well as melting and crystallization kinetics of Si have

been well described by PFM that includes the relaxation of gradient flow as an independent
thermodynamic variable in addition to the introduction of the phase field as slow thermodynamic
variable. The slow phase-field variable is responsible for the description of MD data at small
undercoolings, while the fast gradient flow makes it possible to account for the local non-
equilibrium effects at large undercoolings. This makes the solution of the hodograph equation
sufficiently flexible and enables a reliable description of the MD data in the whole range of
undercoolings. The good agreement between the results of PFM calculations and MD results
for Cr and Si confirms the theoretical assumption on the predominant influence of local non-
equilibrium effects in crystal growth under large thermodynamic driving forces made in the
derivation of the phase-field equations.

4. Summary
The results of the MD simulation study of the temperature dependence of the velocity of the
crystal–liquid interface are reported for two representative one-component systems, Cr and Si.
For both materials, the MD simulations predict non-monotonous dependences characterized
by asymmetric bell-shaped velocity versus temperature curves. The velocities predicted in MD
simulations of Si are found to be well described by the Wilson–Frenkel model adapted to account
for the temperature dependences of the diffusion coefficient in the liquid phase and the latent
heat of melting determined in an additional set of MD simulations. For Cr, however, a more
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than three-fold reduction of the apparent diffusion activation energy upon the transition from
moderate to deep (below 0.7Tm) undercoolings makes it impossible to describe the crystallization
kinetics with equations based on the diffusion-limited or collision-limited theories and a single set
of parameters. The large drop of the effective activation energy observed for Cr points to a change
in the dominant microscopic mechanisms responsible for the advancement of the crystallization
front in the low-temperature regime.

Given the difficulties with a consistent theoretical description of the crystallization kinetics,
we turn to the PFM and demonstrate that the PFM-based hodograph equation is capable of
quantitative description of MD results in the whole range of temperatures. The ability of the
hodograph equation to describe the results of MD simulations is related to the introduction of
slow (phase field) and fast (gradient flow) variables into the original kinetic PFM. The slow phase-
field variable is responsible for the description of data at small undercoolings and the fast gradient
flow variable accounts for local non-equilibrium effects at high undercoolings. The introduction
of these two types of variables makes the solution of the hodograph equation sufficiently flexible
for a reliable description of all nonlinearities of the kinetic curves predicted in MD simulations of
Cr and Si.
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